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Abstract— Distributed computing frameworks such as
MapReduce are often used to process large computational
jobs. They operate by partitioning each job into smaller tasks
executed on different servers. The servers also need to exchange
intermediate values to complete the computation. Experimental
evidence suggests that this so-called Shuffle phase can be a
significant part of the overall execution time for several classes
of jobs. Prior work has demonstrated a natural tradeoff between
computation and communication whereby running redundant
copies of jobs can reduce the Shuffle traffic load, thereby leading
to reduced overall execution times. For a single job, the main
drawback of this approach is that it requires the original job
to be split into a number of files that grows exponentially in
the system parameters. When extended to multiple jobs (with
specific function types), these techniques suffer from a limitation
of a similar flavor, i.e., they require an exponentially large
number of jobs to be executed. In practical scenarios, these
requirements can significantly reduce the promised gains of the
method. In this work, we show that a class of combinatorial
structures called resolvable designs can be used to develop
efficient coded distributed computing schemes for both the single
and multiple job scenarios considered in prior work. We present
both theoretical analysis and exhaustive experimental results
(on Amazon EC2 clusters) that demonstrate the performance
advantages of our method. For the single and multiple job cases,
we obtain speed-ups of 4.69x (and 2.6x over prior work) and
4.31x over the baseline approach, respectively.

Index Terms— MapReduce, data-intensive computing, coded
multicasting, communication load, TeraSort, aggregate functions,
distributed learning.

I. INTRODUCTION

IN RECENT years, there has been a surge in the usage of
various cluster computing frameworks such as MapReduce,

Hadoop and Spark. The era of big data analytics whereby
a large amount of data needs to be processed in a fast
manner has fueled this growth. In these systems, the data set
is usually split into disjoint files stored across the servers.
The computation takes place in three steps. In the Map step,
the servers process the input files to generate intermediate
values having the form of (key, value) pairs. In the next Shuffle
step, the intermediate pairs are exchanged between the servers.
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In the final Reduce step, each server computes a set of output
functions defined based on the keys. Henceforth, we refer to
this as the MapReduce framework.

The MapReduce framework has proven to be quite versatile
and large scale clusters in industry and academia routinely
process terabytes of data using this approach. It is a protocol
well suited for several applications; it fits the computation
of functions which are useful for machine learning [1],
e.g., in deep residual learning for image recognition [2].
Prakash et al. [3] have adapted the general MapReduce frame-
work to graph analytics where computation at each vertex of
the graph requires data only from the neighboring vertices. It is
important to note that the framework intertwines computation
and communication. Specifically, multiple workers allow for
parallel computation; yet data needs to be exchanged between
them to complete the processing of the job. The terms servers
and workers will be used interchangeably throughout the text.

A typical MapReduce implementation splits the overall job
into a number of equal-sized (or approximately equal-sized)
tasks and assigns a single task to each server. However,
for many classes of jobs, extensive experimental results
have shown that in such implementations the Shuffle phase
can be quite expensive and dominates the overall execution
time [4]. There have been several papers [4]–[7], on the
impact of the Shuffle phase on the overall execution of a
MapReduce job and corresponding work on alleviating it.
These effects have been reported in the work of Guo et al. [5]
on Shuffle-heavy operations such as SelfJoin, TeraSort and
RankedInvertedIndex. Distributed graph analytics also suffer
from long communication phases as observed in [3] and [8].

The CDC scheme in [9] (see also [1]) showed an interesting
information theoretic perspective on trading off computation
vs. communication. The basic technique they suggest is to
introduce redundancy in the computation, i.e., execute multiple
copies of a given Map task at different servers and use
coded transmissions to reduce the amount of data exchanged
during the Shuffle phase. The servers use locally available
intermediate values in order to decode the received mes-
sages and compute their output functions. Their work for
a general MapReduce system characterizes and matches the
information-theoretic lower bound on the minimum commu-
nication load under certain assumptions.

In this work, we demonstrate that in practical scenarios,
the original scheme in [9] and [1] require significantly higher
shuffling time than the theoretical prediction. This stems from
the requirement, e.g., that a given job needs to be split into
a large number of small tasks in [9] and we show that it has
detrimental effects on the performance of the method. In this
work, we present a technique based on using combinatorial
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structures known as resolvable designs for exploring the
computation vs. communication tradeoff within distributed
computation and demonstrate its advantages.

II. BACKGROUND, RELATED WORK AND

SUMMARY OF CONTRIBUTIONS

Ahmad et al. [10] introduced “ShuffleWatcher”, a MapRe-
duce scheduler that reduces throughput and job completion
time. The scheme replicates Map tasks and delays or elon-
gates a job’s communication time depending on the network
load. Other related work on this topic has been published
in [11] which considers a model of MapReduce executed on
a multi-core machine and proposes a topology-aware archi-
tecture to expedite data shuffling. Wang et al. [12] present
an algorithm that finds the optimal placement and jointly
optimizes Map and Shuffle time.

To our best knowledge [9], [13] and [14] were the first
to rigorously examine the MapReduce framework within the
computation vs. communication tradeoff. Their work defines
appropriate notions of computation and communication loads
within MapReduce. Their key finding is that the judicious
usage of coded transmissions in the Shuffle phase can signifi-
cantly reduce the communication load. Compared to a baseline
scheme, their algorithm splits the original job more finely into
a certain number of Map tasks and redundantly assigns each
of them to multiple workers. Nonetheless, their work requires
splitting the job into a very large number of files or tasks. This
limitation hurts their scheme in a number of different ways;
the most immediate one is that they require extremely large
data sets as the cluster size scales. Their proposed method also
has to form many shuffling groups of servers communicating
in the Shuffle phase. For each group, each participating server
will initially form an encoded packet to transmit to the rest of
the group; all these packets are stored in the memory of the
server. As a result, their approach suffers from a significant
overhead in encoding time accounting for all groups.

The idea of Compressed Coded Distributed Computing
(CCDC), presented in [1], applies to scenarios where the
underlying functions being computed can be aggregated.
Examples of such functions include, e.g., Average(), Count(),
Max(), Min(), Median(), Mode(), Range() and Sum(). This
kind of computation is predominant in machine learning
(e.g., ImageNet classification [2] and stochastic gradient
descent [15]). Another scenario is matrix-vector multiplica-
tions that are performed during the forward and backward
propagation in neural networks (cf. [16]). This so-called com-
pression technique was initially investigated in [17] by means
of a “combiner function” which merges intermediate values
with the same key computed from different Map functions.
This allows for a potential reduction in network traffic as
intermediate values can be aggregated before transmission in
the Shuffle phase. Interestingly, [1] requires the number of jobs
being processed simultaneously to be very large. This can also
be a restrictive assumption in practice.

The recent work of Woolsey et al. in [18] introduces
a scheme to handle the case when each Reduce function
is computed by s > 1 workers by utilizing a hybercube
structure which controls the allocation of Map and Reduce
tasks. Their work is motivated by distributed applications
that require multi-round Map and Reduce computations.

Another approach that re-examines the computation-
communication tradeoff from an alternate viewpoint has been
investigated in [7]. In this case, the assumption is that a
server does not need to process all locally available files
and storage constraints do not necessarily imply computation
constraints. A lower bound on the computation load and a
heuristic scheme were derived. In [19], the authors propose a
scheme which gives each server access to a random subset
of the input files and not all Reduce functions depend on the
entire data set.

A. Summary of Contributions

As discussed above both [1] and [9] require a certain
problem dimension to be very large. In particular, [9] considers
a single job and requires it to be split into a number of tasks
that grows exponentially in the problem parameters. On the
other hand [1] considers functions that can be aggregated but
requires the number of jobs being processed simultaneously
to grow exponentially. Our work builds on our initial work in
[20] and [21] and makes the following contributions.

• We demonstrate a natural link between the problem of
reducing MapReduce Shuffle traffic and combinatorial
structures known as resolvable designs [22], which in turn
can be easily generated from linear error correcting codes.

• For the single-job case, our resolvable design based
scheme significantly reduces the number of files com-
pared to [9], [13] and [14]. As compared to an uncoded
scheme, CDC in [9] reduces the shuffle phase load by
a factor of r if each task is executed on r workers.
In contrast, our technique reduces the Shuffle phase load
by a factor of r − 1, but requires much fewer files.
It turns out that in practice our method has a higher gain.
For instance, our experiments (cf. Section IV-E) have an
overall speedup of 3.01× compared to [14] where the
procedure of [9] has been applied to a sorting algorithm.

• For the multi-job case we seek a method that combines
the benefits of the coding-theoretic ideas employed in
the single-job case and the fact that the functions being
computed are amenable to aggregation. A simple strat-
egy in the multi-job case would be to simply use the
single-job ideas in a sequential manner. However, our
work shows that a careful assignment of jobs and tasks to
the worker nodes and exploiting the aggregation property
can reduce the Shuffle load significantly. In particular, our
work requires much fewer jobs than CCDC in [1], while
enjoying the exact same Shuffle phase load.

• For both problems we present exhaustive experimental
comparisons on Amazon EC2 clusters with prior work
that demonstrate the efficacy of our method. The code
for our techniques is publicly available at [23] and [24].

Existing distributed frameworks (cf. Hadoop/Spark) typ-
ically use redundancy for a different purpose (e.g., fault
tolerance) while we use it to reduce the Shuffle traffic. Our
work has not been proposed as a variant or incremental fix to
these frameworks. It is demonstrating that a coding-theoretic
viewpoint has the potential to yield great dividends within
the Shuffle phase traffic reduction. Our implementations use
C++ and MPI for a head-to-head comparison with the work
of [9]. Our approaches are applicable to problems requiring
long communication phases where a decrease in Shuffle time
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can significantly offset an increase in Map time due to redun-
dancy. The translation and/or adaptation of our approaches
into protocols that are used in practice is not the focus of
our work but we hope that this theoretical/numerical evidence
spurs more research in this area.

III. PRELIMINARIES

A. Primer on Resolvable Designs

We begin with some basic definitions from combinatorial
design theory [22] that we need for specifying our protocols.

Definition 1: A design is a pair (X , A) consisting of
1) a set of elements (points), X , and
2) a family A (i.e. multiset) of nonempty subsets of X

called blocks, where each block has the same cardinality.
Definition 2: A subset P ⊂ A in a design (X,A) is said to

be a parallel class if for Xi ∈ P and Xj ∈ P with i �= j we
have Xi ∩ Xj = ∅ and ∪{j:Xj∈P}Xj = X . A partition of A
into several parallel classes is called a resolution and (X,A)
is a resolvable design if A has at least one resolution.

Example 1: Let X = {1, 2, 3, 4} and A = {{1, 2},
{3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}}. The (X,A) forms a
resolvable design with the following parallel classes

P1 = {{1, 2}, {3, 4}},P2 = {{1, 3}, {2, 4}} and

P3 = {{1, 4}, {2, 3}}.
It turns out that there is a systematic procedure for construct-
ing resolvable designs, where the starting point is an error
correcting code. We explain this procedure below.

Let Zq denote the additive group of integers modulo q [25].
The generator matrix of an (k, k−1) single parity-check (SPC)
code over Zq

1 is defined by

GSPC =

⎡
⎢⎣

1

Ik−1

...
1

⎤
⎥⎦ . (1)

This code has qk−1 codewords which are given by c =
u · GSPC for each possible message vector u. The code is
systematic so that the first k − 1 symbols of each codeword
are the same as the symbols of the message vector. The qk−1

codewords ci computed in this manner are stacked into the
columns of a matrix T of size k × qk−1, i.e.,

T = [cT
1 , cT

2 , · · · , cT
qk−1 ]. (2)

The corresponding resolvable design is constructed as follows.
Let XSPC = [qk−1] (we use [n] to denote the set {1, 2, . . . , n}
throughout) represent the point set of the design. We define
the blocks as follows. For 0 ≤ l ≤ q − 1, let Bi,l be a block
defined as Bi,l = {j : Ti,j = l}.

The set of blocks ASPC is given by the collection of all Bi,l

for 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1 so that |ASPC | = kq. The
following lemma (proved in [26]) shows that this construction
always yields a resolvable design.

Lemma 1: The above scheme always yields a resolvable
design (XSPC ,ASPC) with XSPC = [qk−1], |Bi,l| = qk−2

for all 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1. The parallel classes are
analytically described by Pi = {Bi,l : 0 ≤ l ≤ q − 1}, for
1 ≤ i ≤ k.

1We emphasize that this construction works even if q is not a prime, i.e., Zq

is not a field.

Example 2: The generator matrix of this (3, 2) SPC code
over Z2 (binary), i.e., for k = 3 and q = 2 is given by
GSPC =

[
I2×2 12×1

]
. The matrix T can be obtained as

T = [cT
1 , cT

2 , cT
3 , cT

4 ] =

⎡
⎣0 0 1 1
0 1 0 1
0 1 1 0

⎤
⎦ .

It can be observed, e.g., that B1,0 = {1, 2} and B1,1 =
{3, 4} so that they form a parallel class. In fact, this construc-
tion returns the resolvable design considered in Example 1.

B. Main Shuffling Algorithm

Throughout the paper we specify the Shuffle phases by
means of various coded transmissions. The following lemma
is repeatedly used in the sequel; the proof is in the Appendix.

Lemma 2: Consider a group of k servers G =
{U1, . . . , Uk} with the property that every server in G \ {U�},
stores a chunk of data of size B bits, denoted D[�], that U�

does not store. Then, Algorithm 1 specifies a protocol where
each server in G can multicast a coded packet useful to the
other k − 1 servers such that after k such transmissions each
of them can recover its missing chunk. The total number of
bits transmitted in this protocol is Bk/(k − 1).

Algorithm 1 Shuffling Algorithm of Lemma 2

Input: Group of servers G = {U1, . . . , Uk},
data chunks {D[j] : Uj ∈ G} s.t. ∀j, D[j] ∈ Ul where
l �= j and D[j] /∈ Uj .

1 for each chunk D[j] do
2 Split the chunk into k − 1 disjoint packets

C = {D[j][i] : i = 1, . . . , k − 1}.
3 Consider a complete bipartite graph with vertex set
4 {G \ {Uj}, C} and choose a matching H [j]

5 within the graph s.t. each node in G \ {Uj} is
6 matched to a node in {D[j][1], . . . ,D[j][k − 1]}.
7 H [j](Ul) denotes the right neighbor of Ul in H [j].
8 end
9 for each server Um ∈ G do

10 Um broadcasts2

Δm = ⊕
j
H [j](Um). (3)

11 end

IV. SINGLE-JOB CASE

A. Overview of the Method

The process starts by generating the SPC code as described
in Section III-A. The code controls how many subfiles the
data set needs to be split into and the corresponding resolvable
design gives the assignment of subfiles to servers (for the Map
phase). The workers receive the corresponding subfiles from
the master node and process them during the Map phase. The
resulting intermediate values are encoded into packets by each
worker. Specifically, each server computes one encoded packet
for each shuffling group it will be participating into during the
communication phase. Subsequently, they form groups of fixed

2The operation in eq. (3) is a bitwise XOR.
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TABLE I

PROPOSED PLACEMENT SCHEME FOR EXAMPLE 4

size and communicate during the Shuffle phase. In the Shuffle
phase, each worker receives intermediate data that it needs
in order to perform its reduction operations. These encoded
packets are decoded using locally computed intermediate data.
Finally, the servers reduce their assigned functions and return
all results to the master node.

B. Problem Formulation

We now discuss the problem formulation more formally,
based closely on [9]. In the single-job scenario, the goal is to
process one distributed MapReduce job. Let W denote the data
set. There are N input files that correspond to equal-sized and
disjoint parts of W . There are Q arbitrary output functions
that need to be computed across these N files. There are a
total of K servers U1, . . . , UK . The files will be denoted by
w1, . . . , wN and the output functions by φj , j = 1, . . . , Q.
Each function φj depends on all the files w1, . . . , wN . We
assume that the j-th function can be computed by a Map
phase followed by a Reduce phase, i.e., φj(w1, . . . , wN ) =
hj(gj,1(w1), . . . , gj,N(wN )). Here, gn = (g1,n, . . . , gQ,n)
maps the file wn into Q intermediate values νj,n, j = 1, . . . , Q
each of which is assumed to be of size B bits. The function hj

maps the intermediate values νj,n on all files into a “reduced”
value hj(gj,1(w1), . . . , gj,N(wN )).

Example 3: Suppose that we consider the problem of com-
puting Q = 4 functions in a data set consisting of N = 4 files
on a cluster with K = 4 servers. The files are w1, . . . , w4 and
the functions are φ1, . . . , φ4, e.g., φ1(w1, . . . , w4) would be
the evaluation of φ1 on the entire data set. Let us assume
that the i-th server is assigned file wi for all values of i.
In the Map phase, server i computes gi on its assigned file
wi for i = 1, . . . , 4. In the Reduce phase, we can see that,
e.g., φ1(w1, . . . , wN ) can be computed as φ1(w1, . . . , wN ) =
h1(g1,1(w1), . . . , g1,N(wN )).

As noted in Section I, there are several MapReduce jobs
where the Shuffle phase is rather time-intensive. Thus, when
operating on a tradeoff between communication and compu-
tation, i.e., one could choose to increase the computation load
of the system by processing the same file at r > 1 servers.
This would in turn reduce the number of intermediate values
it needs in the Reduce phase. For the remainder of the paper,
we refer to r as the computation load.

Definition 3: The communication load L ∈ [0, 1] of a
certain single-job scheme is defined as the ratio of the total
number of bits transmitted in the data shuffling phase to QNB.

In Example 3, for the baseline approach, at the end of the
Map phase, each server needs three values from the other
servers. Thus, the total number of bits transmitted would be
4×3×B = 12B. Thus, the communication load of the system
will be L = 12B/16B = 3/4.

Example 4 that follows examines a single job and demon-
strates that increasing r can translate into lower communica-
tion loads compared to the baseline method.

TABLE II

CODED TRANSMISSIONS IN ALL GROUPS OF EXAMPLE 4

Example 4: Consider a system with K = 6 servers, a com-
putation load of r = 3 (i.e., each Map task will be assigned to
3 distinct servers) and Q = 6 functions to be computed. Each
of these functions depends on the entire data set and will be
assigned to one server for the Reduce phase. In our approach
we would subdivide the original job into N = 4 files that will
be assigned to the servers as demonstrated in Table I. At the
end of the Map step, each server would have computed the
Q functions on its assigned Map files. Suppose that the i-th
server is responsible for reducing the i-th function. This would
imply, for example, that server U1 needs the first function’s
evaluation on files w3 and w4.

The key idea of our approach is for each server to transmit
a packet that is simultaneously useful to multiple servers.
For example, let us consider the group of servers G1 =
{U1, U3, U6} that were assigned files {w1, w2}, {w1, w3} and
{w2, w3}, respectively. At the end of the Map phase, e.g.,
server U1 wants ν1,3, server U3 wants ν3,2 and server U6 wants
ν6,1. We assume that νj,n can be encapsulated into a packet
with size B bits, denoted by p(νj,n). Furthermore, assume
that this packet can be subdivided into two parts p(νj,n)[1]
and p(νj,n)[2] (with size B/2 bits).

Now consider Table II. Note that server U1 contains files w1

and w2 and can therefore compute all Q functions associated
with them. Thus, it can transmit p(ν3,2)[1] ⊕ p(ν6,1)[2] as
specified in row 1 of the top-right block in Table II. Note
that this transmission is simultaneously useful to both servers
U3 and U6. In particular, server U3 already knows p(ν6,1)[2]
and can therefore decode p(ν3,2)[1] which it wants. Likewise,
server U6 already knows p(ν3,2)[1] and can decode p(ν6,1)[2]
that it wants. In a similar manner, it can be verified that
each of the transmissions in Table II benefits two servers of
the corresponding group. The process of picking the servers
to consider together can be made systematic; in addition to
server group G1 that we just considered, we can pick three
others: G2 = {U1, U4, U5}, G3 = {U2, U3, U5} and G4 =
{U2, U4, U6} which will result in all the servers obtaining their
desired values.
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The total number of bits transmitted in this case is therefore
4 × 3 × B/2 = 6B, where B is the size of each intermediate
value νi,j in number of bits; thus, the communication load is

6B
QNB = 0.25. In contrast, uncoded transmission from the dif-
ferent servers would have required a total of 2×6×B = 12B
bits to be transmitted, corresponding to a communication load
of 0.5 which is twice of the proposed approach. We emphasize
that if r > 1 an uncoded scheme will also assign multiple
copies of each Map task to different servers; all of the servers
need to return the values. This assumption is taken into account
in our communication load analysis based on Definition 3 as
it facilitates a fair comparison across different methods and is
implemented in all of the algorithms (cf. [23] and [27]).

We note here that the authors of [9] promise a communi-
cation load of Lcoded(r) = 1

r (1 − r
K ) ≈ 0.17. In general,

the possible values of r for that scheme are {1, . . . , K}.
However, crucially this result assumes that N =

(
K
r

)
η1, where

η1 is a positive integer. It is evident that N grows very rapidly
for their scheme. In Section IV-E, we demonstrate that in
real-life experiments this idealized analysis is problematic.

We acknowledge that some MapReduce algorithms may be
impacted by data skewness [28], a situation when certain Map
or Reduce tasks may take significantly longer to process than
others. However, TeraSort as well as distributed matrix-vector
multiplication (considered in Section V-G) do not suffer from
this issue [29]. For these problems our assumption of homoge-
neous mappers and reducers is a reasonable one. This justifies
the fact that both prior and proposed methods split the data
set into equal-sized subfiles each mapped to an intermediate
value of a fixed number of bits. Also, our algorithms deliber-
ately assign roughly equal number of Reduce operations to
all workers. We emphasize that the focus of our work is
not solving all issues with respect to Shuffle phase traffic
reduction in MapReduce systems but to reveal the potential
of coding-theoretic methods in this area.

C. From Resolvable Designs to Protocol Specification

We assume that Q is a multiple of K . In Algorithm 2,
we present the protocol which can be understood as follows.
We choose an integer q such that q divides K , i.e., K = k×q.
Next, we form a (k, k − 1) SPC code and the corresponding
resolvable design using the procedure in Section III-A. The
point set X = [qk−1] and the block set A will be such that
|A| = kq. The blocks of A will be indexed as Bi,j , i =
1, . . . , k and j = 0, 1, . . . , q − 1.

We associate the point set X with the files, i.e., N = |X | =
qk−1 and the block set A with the servers. For the sake of
convenience we will also interchangeably work with servers
indexed as U1, . . . , UK with the implicit understanding that
each Ui, i ∈ [K] corresponds to a block from A. The Map task
assignment follows the natural incidence between the points
and the blocks, i.e., server Bi,j is responsible for executing
the Map tasks on the set of files Map[Bi,j ] = {w� | � ∈ Bi,j}.
Thus, at the end of the Map phase, server Bi,j has computed
the Q intermediate values on the files in Map[Bi,j ].

Recall that we assume that K divides Q. To make load
balancing fair we assign Q/K functions to each of the K
servers per job for the Reduce phase. This assumes that all
Q functions are computed on every file during the Map phase
and sent to the appropriate server. However, if Q is a multiple

Algorithm 2 Proposed Single-Job Protocol
Input: File W , Q functions, number of servers

K = k × q. K divides Q.
1 Use a (k, k − 1) SPC code to generate a design (X ,A).
2 Split W into qk−1 disjoint files, w1, . . . , wqk−1 .
3 Assign files to servers such that server Bi,j is assigned

file w� if � ∈ Bi,j .
4 Partition [Q] into K equal parts to obtain the sets φBi,j

for i = 1, . . . , k and j = 0, . . . , q − 1. Execute the Map
phase on each of the servers.

5 Choose all possible sets {B1,j1 , B2,j2 , . . . , Bk,jk
} where

j� ∈ {0, . . . , q − 1}, such that ∩k
�=1B�,j�

= ∅ and store
them in a collection G.

6 for γ ∈ [Q/K] do
7 for each group G = {B1,j1 , B2,j2 , . . . , Bk,jk

} ∈ G do
8 Determine D[�] = νφBi,j [γ],∩k �=�Bk,jk

for
� = 1, . . . , k used in Algorithm 1 and execute this
algorithm to exchange this data among the servers
in G.

9 end
10 end
11 Execute Reduce phase on each of the servers.

of K , then each transmitter can transmit a coded packet in
which each term is the concatenation of Q/K intermediate
values, one for each function of the receiver. An alternative
approach would be to have the servers communicate Q/K
times, one for each intermediate value needed by a server (this
idea is used in Algorithm 2). We let φBi,j ⊂ [Q] represent the
set of functions assigned for reduction to server Bi,j . The
sets φBi,j form a partition of [Q]. For ease of notation, we let
φBi,j [�] represent the �-th function in the set φBi,j ; � ∈ [Q/K].

Following the Map phase, in the Shuffle phase, each server
Bi,j needs intermediate values from other servers so that
it has enough information to reduce the functions in φBi,j .
In this step we transmit coded packets that are simultane-
ously useful to multiple servers. Towards this end we form
a collection of server groups by choosing one block from
each parallel class according to the rule in Step 5 of the
protocol, i.e., we choose servers B1,j1 , B2,j2 , . . . , Bk,jk

such
that ∩k

�=1B�,j�
= ∅. For a given server group G (of size k)

we utilize Algorithm 1.

D. Proof of Correctness and Communication Load Analysis

We now prove that the proposed protocol allows each server
Bi,j to recover enough information at the end of the Shuffle
phase. As the protocol is symmetric with respect to blocks,
we equivalently show that server B1,j1 is satisfied. Note that
|B1,j1 | = qk−2. For the purposes of our arguments below,
we assume that Q = K . The case when Q is an integer
multiple of K is quite similar. In this case, with some abuse
of notation, since φB1,j1 is a singleton set, we use φB1,j1

to actually represent the function index itself. It is therefore
clear that B1,j1 needs the intermediate values ν

φ
B1,j1 ,n

for
n ∈ [qk−1] \ B1,j1 .

Now consider the construction of the server groups.
Let G be a server group where B1,j1 is chosen from P1,
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TABLE III

MEASUREMENTS FOR SORTING 12GB DATA ON 16 SERVER NODES WITHOUT CODING

TABLE IV

MAPREDUCE TIME FOR SORTING 12GB DATA ON 16 SERVER NODES INCLUDING THE MEMORY ALLOCATION COST

i.e., G = {B1,j1 , B2,j2 , . . . , Bk,jk
}. The following lemma

(proved in [26]), shows that the intersection of any k − 1
blocks from k− 1 distinct parallel classes is always of size 1.

Lemma 3: Consider a proposed resolvable design (X,A)
constructed with parameters k and q and parallel classes
P1, . . . ,Pk. If we pick k − 1 blocks Bi1,l1 , . . . , Bik−1,lk−1

(where ij ∈ [k], lj ∈ {0, . . . , q − 1}) from distinct parallel
classes Pi1 , . . . ,Pik−1 , then | ∩k−1

j=1 Bij ,lj | = 1.
Furthermore, note that the intersection of all the blocks

in G is empty (cf. Step 5 of Algorithm 2). There is one-
to-one correspondence between this setup and Lemma 2.
The group of servers on which we will apply the lemma
is precisely G. Also, observe that server B�,j�

misses the
unique file ∩k �=�Bk,jk

that all other servers in G share (cf.
Lemma 3) and B�,j�

will be reducing the function φB�,j� (note
that we have dropped the index γ from the intermediate value
corresponding to D[�] from Algorithm 2 due to our assumption
that Q = K). Hence, the correspondence of intermediate
values to chunks of Lemma 2 is D[�] = ν

φ
B�,j� ,∩k �=�Bk,jk

.
We conclude the proof by observing that a given block,

e.g., B�,j�
participates in qk−2(q − 1) = qk−1 − qk−2 server

groups each of which allow it to obtain distinct intermediate
values. This can be seen as follows. Suppose for instance,
that ∩k �=�Bk,jk

= ∩k �=�Bk,j′
k

where jm �= j′m for at least one
value of m ∈ [k] \ {�}. In this case, we note that the equality
above implies that ∩k �=�Bk,jk

⋂∩k �=�Bk,j′k �= ∅. This is a
contradiction, because Bm,jm ∩ Bm,j′m = ∅ as they are two
blocks belonging to the same parallel class.

Therefore, since B�,j�
is missing exactly qk−1 − qk−2

intermediate values, it follows that at the end of the Shuf-
fle phase it is satisfied. By symmetry, all servers are
satisfied.

Next, we present the analysis of the communication load of
our algorithm. In the uncoded case, each server needs QN/K
intermediate values νj,n’s to execute its Reduce phase. Note
that each server already has rN/K × Q/K of them. Thus,
the communication load is given by

Lsingle
uncoded =

K(QN/K − rQN/K2)B
QNB

= 1 − r

K
.

On the other hand, for our scheme, the number of bits
transmitted in the Shuffle phase is given by

qk−1(q − 1) · B k

k − 1
· Q

K
.

TABLE V

TERASORT MEMORY ALLOCATION COST PERCENTAGE

Thus, the communication load is given by

Lsingle
proposed =

qk−1(q − 1) · B k
k−1 · Q

K

QNB
=

1
k − 1

(
1 − k

K

)
,

where the second equality above is obtained by using the fact
that N = qk−1 and K = kq.

Next, note that for our proposed scheme the computation
load is k, i.e., r = k. Thus, we reduce the overall communica-
tion load by a factor of 1

r−1 with respect to an uncoded system.
In contrast, the approach in [9], reduces the communication
load by a factor of 1

r . However, this comes at the expense of
a large N as discussed previously.

E. TeraSort Experimental Results and Discussion

We implemented our technique on Amazon EC2 and per-
formed comparisons with the method of [14] using their posted
software at [27]. Table III corresponds to a uncoded TeraSort
with r = 1. It shows that the Shuffle phase which takes
999.84 seconds, dominates the overall execution time by far.
A detailed description of the setup appears in the Appendix.

Table IV contains the results of TeraSort using our approach
and comparisons with the approach in [14]. Nearly 130× 106

KV pairs should be sorted. The time required for each phase
has been reported. For the total time taken, we have reported
the numbers including and excluding the memory allocation
time-cost. This is because the results in [14] are generated
using the code in [27] which explicitly ignores the mem-
ory allocation time (cf. communication with the first author
of [14]). However, we have observed that for data sets at this
scale, dynamic memory allocation on the heap (using the C++
new operator) has a non-negligible impact on the total time.
Thus, in our implementation (available at [23]), we measure
the memory allocation time as well and we report its fraction
on Table V. We emphasize however, that the results in Table IV
indicate that our approach is consistently superior whether or
not one takes into account the memory allocation time.
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To understand the effect of choosing different values of N
(cf. Table IV), we applied our algorithm with different values
of (k, q) = (r, q) pairs. We observe from Table IV that if we
account for the memory allocation cost, our scheme achieves
up to 4.69× speedup compared to the uncoded TeraSort
whereas if we ignore this cost our schemes demonstrates an
improvement of up to 5.51×. Moreover, the gain over the prior
coded TeraSort scheme, if we compare the best time reported
by each scheme, can go up to 4.69/1.56 ≈ 3.01× (when
including memory allocation time) or 5.51/2.30 ≈ 2.4×
(when excluding memory allocation time). We note here that
the Shuffle phase results corresponding to r = 8 for prior work
could not be obtained as their program crashed. The following
inferences can be drawn from Table IV.

• The algorithm starts with the CodeGen phase during
which all workers generate the resolvable design based
on our choice of the parameters q and k. Based on the
design, all groups of workers that will be communicating
in the Shuffle phase are determined. Next, the data set
is split into N files by the master and the appropriate
files are transmitted to each worker. In our experiments
this phase is quite efficient since the number of groups
we need to generate and consequently the number of
shuffling sub-groups we need to split the group containing
all the servers into, is much smaller than that of the prior
scheme. For example, let us look at the CodeGen time
for r = 3 of the prior scheme which is t1 = 5.82.
The corresponding number of groups is g1 =

(
K

r+1

)
=(

16
4

)
= 1820. For our scheme, that time is t2 = 0.64 and

the number of multicast groups is g2 = qr−1(q − 1) =
43 × 3 = 192. Now if we try to interpolate our code
generation cost from t1, based on our analysis, we would
get:

t′2 =
g2

g1
× t1 =

192
1820

× 5.82 ≈ 0.61 ≈ t2.

• The Map time mainly depends on the computation load r.
Since r is the number of times the whole data set is
replicated and processed across the cluster we expect the
Map cost of both coded schemes to be approximately r
times higher than that of the uncoded implementation.
Indeed, if we look at our scheme for r = 4 we see that
25.91
5.71 ≈ 4.54 is a good approximation to r.

• The encoding time of the coded schemes (which is
the time it takes so that all servers form the encoded
packets that they will be transmitting afterwards) is
not directly comparable to the packing of the uncoded
approach which stores each intermediate value serially
in a continuous memory array to ensure that a single
TCP connection is initiated for each intermediate value.
Further examination of the internals of C++ dynamic
memory allocation (which we used) is beyond the scope
of our analysis but one point we emphasize is that we
have a significant benefit over the prior scheme during
encoding. For r = 8, we obtain a speedup of 1128.16

26.22 ≈
43.03. This is explained by the fact that in the previous
scheme each server participates into much more groups
and thus it needs to store more encoded data into its
memory.

• The Shuffle phase is where we can see the advantage
of our implementation. For example, when r = 8, our
predicted load will be 1/14, while the load of the uncoded
r = 1 scheme will be 15/16. Thus, with the same
transmission rate we expect our Shuffle phase to be
13.125 times faster. However, our obtained transmission
rate is approximately 62.68 Mbps. Thus, the overall
gain is expected to be around 8.16 times. In the actual
measurements our gain is 1105.64

127.43 ≈ 8.68 which is
quite close to the prediction. On the other hand, let us
consider the prior scheme when r = 5. In this case the
load analysis predicts a gain of 6.82 assuming that the
transmission rates are the same and a gain of 4.13 when
accounting for the different rates. However, the actual
gain is 1105.64

297.28 ≈ 3.72. Some of these discrepancies can
be explained by the fact that the cost of multicasting a
message from a server to n receivers is not necessarily
n times cheaper than unicasting that message separately
to each of the n receivers. In particular, in Open MPI
there are seven modes of broadcasting a common message
to multiple receivers. These include basic linear, chain
and binary tree among others. For instance, in a typical
binary tree the sender is the root of the tree and the
receivers are the descendants of it. The transmission
starts from the root and propagates downward. The depth
of the tree is logarithmic in the number of nodes so
it can achieve a logarithmic speed-up as compared to
unicast. Since the details of these implementations fall
beyond the scope of our research we have chosen to
use the automatic module which selects the transmission
algorithm on-the-fly depending on the communicator and
message sizes. However, our load analysis corresponds
to a basic linear broadcast (the sender sends a common
message to all receivers one at a time without parallel
communication). Hence, our definition of communication
load, defined as the total number of bits transmitted
divided by the time, provides a theoretical worst-case of
the load one could achieve; it also sets a common metric
which helps us compare with uncoded approaches and
other coded schemes in equal terms. Indeed, for small
communicators of size k like in our experiments the
MPI quite likely resorts to the basic linear broadcast and
the transmitter sends the common packet sequentially to
all receivers [30]. If MPI resorts to a parallel broadcast
algorithm such that of a binary tree it won’t generally
perform all transmissions of a tree level in parallel.
However, it will prioritize them such that one child of
each transmitter is serviced first while the other is waiting
and it will maximize the bandwidth of the connections
of the transmitter-receiver pairs which are serviced first.
The overhead of setting the connections is much lesser
in our protocol due to the reduced number of groups.
Specifically, the latency (number of transmissions) of
our method is k transmissions per group for a total of
qk−1(q − 1)k transmissions. Moreover, the lower layers
of network protocols introduce additional headers into
packets likely to affect more the prior scheme due to
smaller payloads.

The major issue of the prior TeraSort scheme in [14] is the
large value of N that it needs. This translates into a large num-

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:33 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. MPI_Comm_Split execution time.

ber (
(

K
r+1

)
) of server groups in the shuffling phase. This num-

ber can be prohibitive for High Performance Computing (HPC)
communication protocols like the Message Passing Interface
(MPI). This is because all MPI communication is associated
with a communicator that describes the communication con-
text and an associated group of processes. But, the cost of
splitting the initial communicator is non-negligible [31]. In the
case of coded TeraSort of [14] the overall communicator needs
to be split into

(
K

r+1

)
intra-communicators each facilitating the

communication within a group.
We demonstrate the impact of this issue by explicitly

measuring the time needed to split the initial communicator
of K servers into

(
K
x

)
intra-communicators, each of size x

for different values of K and x. Let us refer to Fig. 1. We
see that MPI_Comm_Split incurs an exponential cost that can
easily dominate the overall MapReduce execution. This clearly
indicates that even though the communication load may reduce
with increasing r in the scheme of [14], the overall execution
time may be adversely affected (see [31] for more details).

Another point to consider is that the MPI library might
support a limited number of communicators. Some indicative
examples are those of Open MPI which supports up to
230 − 1 communicators, MPI over InfiniBand, Omni-Path,
Ethernet/iWARP and RoCE (MVAPICH) which allows for
up to 2000 communicators and High-Performance Portable
MPI (MPICH) that limits this number to 16000. Thus, if we
have (K = 50, r = 10) the number of required groups will be(
50
11

)
which would exceed these limits. In our method, we could

choose (q, k) = (5, 10) or (q, k) = (2, 25) both of which are
below Open MPI communicator limits, requiring 7812500 and
16777216 groups, respectively.

Our experiments indicate that the time consumed in memory
allocation can be non-negligible and this is a major issue.
We emphasize though that our gains over prior methods hold
even if we do not take the memory allocation time into
account.

Another interesting aspect of our experiments is that the
observed transmission rate appears to change based on the
value of r. In our experiments we capped the transmission
rate at 100 Mbps. However, the observed rate can be as low
as 61.04 Mbps. As our experiments run on Amazon EC2,

we do not have a clear explanation on the underlying reasons.
Nevertheless, we point out the rates for our proposed r = 8
and the prior scheme r = 5 are quite close.

V. MULTI-JOB CASE FOR FUNCTIONS

AMENABLE TO AGGREGATION

In this section we discuss how resolvable designs can
help with processing multiple jobs on a cluster where the
underlying functions are amenable to aggregation. Our goal is
to process J distributed computing jobs (denoted J1, . . . ,JJ )
in parallel on a cluster with K servers. The data set of each job
is partitioned into N disjoint and equal-sized files. The files
of the j-th job are denoted by n(j), n = 1, . . . , N . A total of
Q output functions, denoted φ

(j)
q , q = 1, . . . , Q, need to be

computed for each job. Note that these Q functions may be
different across different jobs. We examine a special class of
functions that possess the aggregation property.

Definition 4: In database systems, an aggregate function φ
is one that is both associative and commutative.

For example, in jobs with “linear” aggregation the evalua-
tion of each output function can be decomposed as the sum of
N intermediate values, one for each file, i.e., for q = 1, . . . , Q,

φ(j)
q (1(j), . . . , N (j)) = ν

(j)
q,1 + ν

(j)
q,2 + · · · + ν

(j)
q,N ,

where ν
(j)
q,n = φ

(j)
q (n(j)) and each such value is assumed to

be of size B bits. In what follows we use α(ν(j)
q,1 , . . . , ν

(j)
q,m) to

denote the aggregation of m intermediate values ν
(j)
q,1, . . . , ν

(j)
q,m

of the same function φ
(j)
q and job Jj into a single compressed

value. We assume that it is also of size B bits.
As before, a master machine places the files on the servers

according to certain rules. Note that each file is placed on at
least one server before initiating the algorithm.

Definition 5: The storage fraction μ ∈ [1/K, 1] of a distrib-
uted computation scheme is the fraction of the data set across
all jobs that each server locally caches.

Once again, we assume that Q is divisible by K . As we
have already discussed, our scheme is easily adapted to that
case, we choose to keep the discussion simple and focus on
the Q = K case, i.e., each server is reducing one function.

The framework starts with the Map phase during which the
servers (in parallel) map every file n(j) that they contain to the
values {ν(j)

1,n, . . . , ν
(j)
Q,n}. Following this, the servers multicast

the computed intermediate values amongst one another via a
shared link in the Shuffle phase. In the final Reduce phase,
server Uk computes (or reduces) φ

(j)
k (ν(j)

k,1, . . . , ν
(j)
k,N ) for j =

1, . . . , J as it has all the relevant intermediate values required
for performing this operation.

Definition 6: The communication load L of a scheme exe-
cuting J jobs is the total amount of data (in bits) transmitted
by the servers during the Shuffle phase normalized by JQB.

Our proposed algorithm will be abbreviated as CAMR
(Coded Aggregated MapReduce). Our main idea is to again
use resolvable designs. However, the interpretation of the
design, i.e., the correspondence of the points and blocks with
the MapReduce setup is significantly different.

A. Job Assignment and File Placement

Our cluster consists of K servers and we choose appropriate
integers q, k so that K = k×q. The number of files N needs to
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be divisible by k; we discuss its choice shortly. Next, we form
a (k, k− 1) SPC code and the resolvable design, as described
in Section III-A. The jobs to be executed are associated with
the point set X = [qk−1] so that J = qk−1. The block set A
is associated with the servers, i.e, each server corresponds to
a block Bi,j , i = 1, . . . , k, and j = 0, 1, . . . , q − 1.

Job Jj is processed by (or “owned” by) the server indexed
by Bi,l if j ∈ Bi,l. Let us denote the owners of Jj by
X(j) ⊂ {U1, . . . , UK}. For each job, the data set is split into k
batches and each batch is made up of γ files, for any positive
integer γ > 1 (recall that k|N ); even though there are no
other constraints on γ, it gives us a finer control over the
subpacketization level that we want depending on the data set
size. The file placement policy is illustrated in Algorithm 3.

Algorithm 3 File Placement

Input: J jobs, owner sets {X(j), j = 1, . . . , J}, k used
in SPC code, batch size γ.

1 Set N = kγ.
2 for each job Jj do
3 Split the data set of Jj into N disjoint files

{1(j), . . . , N (j)} and partition them into
k batches of γ files each.

4 Let X(j) = {Ui1 , . . . , Uik
}. Label each batch with a

distinct index of an owner so that
5 the batches are B = {B(j)

[i1]
, . . . ,B(j)

[ik]}.

6 for each owner Uk′ ∈ X(j) do
7 Store all batches in B except B(j)

[k′] in server Uk′ .
8 end
9 end

Each server is the owner of qk−2 jobs (block size). For each
such job it participates in k−1 batches of size γ, as explained
in Algorithm 3. Hence, our required storage fraction is

μ =
qk−2 · (k − 1) · γ

Jkγ
=

k − 1
K

.

B. Map Phase

During this phase, each server maps all the files of each job
it has partially stored, for all output functions. The resulting
intermediate values have the form ν

(j)
q,n = φ

(j)
q (n(j)), q ∈ [Q],

n ∈ [N ], j ∈ [J ].
At the end of the Map phase, for each job Jj , each mapper

combines all those values ν
(j)
q,n that are indexed with the same

q and j (in other words, associated with the same function and
job) and belong to the same batch of files; we have already
referred to this operation as aggregation.

C. Shuffle Phase

The CAMR scheme carries out the data shuffling phase in
three stages. The first two stages use Algorithm 1 of Lemma 2
introduced for the single-job case.

We will be focusing on a server Uk′ , associated with a
block, say Bx,y, and we will argue that Uk′ is able to recover
all missing aggregate values at the end of the Shuffle phase.
Based on Algorithm 3, Uk′ stores batches B(j)

[z] for all values of

(j, z) s.t. j ∈ Bx,y and z �= k′; those are the bathes Uk′ stores
for all the jobs it owns. But Uk′ misses one batch for each
of these jobs which is B(j)

[k′] for all values of j s.t. j ∈ Bx,y;
in addition, Uk′ does not store any batches of the remaining
jobs, i.e., it misses the batches B(j)

[z] for all values of (j, z) s.t.
j /∈ Bx,y.

1) Stage 1: In this stage, only owners of each job commu-
nicate among themselves. Let us fix a job Jj that Uk′ owns
and consider the servers in X(j) \ {Uk′} of cardinality k − 1
(cf. Algorithm 3). During the Map phase, each server in that
subset has computed an aggregate needed by the remaining
owner Uk′ which is (note from Algorithm 3 that batch B(j)

[k′]
is not available in Uk′ )

α
(j)
[k′] = α({ν(j)

k′,n : n ∈ B(j)
[k′]}).

Let us keep the job Jj fixed. Then, if we repeat the above
procedure for all owners Up ∈ X(j) we can identify the
aggregates α

(j)
[p] . Each of these values is needed by exactly

one owner Up.
There is an immediate correspondence between this setup

and Lemma 2 which is G = X(j) and D[p] = α
(j)
[p] for j =

1, . . . , J . Hence, Algorithm 1 can be utilized here so that each
owner of Jj , after receiving k−1 such values (one from every
other owner of that particular job), can decode all of its missing
aggregates for job Jj . We can repeat this process for every
value of j, i.e., for every job. In total, J groups of servers (the
owner set of each job), each of size k will be communicating
among themselves in this stage.

At the end of stage 1, worker Uk′ (block Bx,y) should have
recovered all needed intermediate values of batches of the form
B(j)

[k′] for all values of j s.t. j ∈ Bx,y.

2) Stage 2: In this stage, we form communication groups
of both owners and non-owners of a job, so that the latter can
recover appropriate data to reduce their functions.

Towards this end, we form collections of server groups
by choosing one block from each parallel class based
on a simple rule. We choose a group of servers G =
{B1,j1 , B2,j2 , . . . , Bk,jk

} such that ∩k
�=1B�,j�

= ∅. Without
loss of generality, assume that Uk′ ∈ G. If we remove
Uk′ from G, the servers in the corresponding subset P =
G \ {Uk′} of cardinality |P | = k − 1 jointly own a job, say
Jj , that the remaining server Uk′ does not (cf. Lemma 3).
In addition, based on the aforementioned file placement policy
(cf. Algorithm 3), they share the batch of files B(j)

[l] for that

common job and some Ul ∈ X(j). Note that Ul does not
contain the batch B(j)

[l] .
The following simple observation is important.
Observation 1: By construction, Ul is precisely the remain-

ing owner of Jj and it should lie in the parallel class that none
of the other owners belong to. This is precisely the same class
in which Uk′ lies.

During the Map phase, each server in P has computed an
aggregate needed by Uk′ which is

β
(j)
[k′] = α({ν(j)

k′,n : n ∈ B(j)
[l] }). (4)

As in stage 1, Lemma 2 fits in this description and
Algorithm 1 defines the communication scheme; the shuffling
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Fig. 2. Proposed placement scheme for K = 6 servers and N = 6 files per computing job for J = 4 jobs. The dotted lines show the partition of the servers
into parallel classes.

group is G and each server Up ∈ G needs its missing chunk
D[p] = β

(j)
[p] for the unique batch that all servers in P share.

Server Uk′ participates in qk−2(q − 1) such groups G
satisfying the aforementioned rule. For each such G, Uk′ does
not own a job (and a corresponding batch) that the servers in
G \ {Uk′} own. The missing batch is exactly B(j)

[l] for some l
such that Ul lies in the same parallel class as Uk′ . At the end
of stage 2, Uk′ is able to decode qk−2(q − 1) aggregates of
the form in eq. (4) one for each job it does not own.

3) Stage 3: Each server is still missing values for jobs that it
is not owner of from stage 2. Now, servers communicate within
parallel classes. We emphasize the following observation.

Observation 2: All values that server Uk′ still needs can
be aggregated and transmitted by a single owner-server in the
same parallel class that Uk′ belongs to. This server is unique
and transmits one aggregate value of its jobs to every other
server in the same parallel class.

The proof of the above observation follows from stage 2
and by the resolvability property of our design. Let us fix a
shuffling group in stage 2, say G, a subset P = G \ {Uk′}
and focus on the excluded server Uk′ . The servers in P jointly
own a unique job Jj that Uk′ misses. The remaining owner of
Jj is some Ul that lies in the same parallel class as Uk′ . Note
that stage 2 has already allowed us to recover the aggregate
on the unique batch of Jj that the servers in P share; this
batch is not contained in Ul. However, based on Algorithm 3,
Ul contains all the other batches associated with Jj and can
hence compute the aggregate function on them. This is exactly
what happens in stage 3 for each server.

More formally, we have the following argument. Recall that
the i-th class is Pi = {Bi,j , j = 0, . . . , q − 1} and fix a job
Jj that a server Uk ∈ Pi owns and Uk′ ∈ Pi does not. Then
Uk transmits

Δstage 3
k = α

( ⋃
l:Ul∈X(j)\{Uk}

{ν(j)
k′,n : n ∈ B(j)

[l] }
)

(5)

to Uk′ ∈ Pi; obviously, Uk′ /∈ X(j). We will do this process
for every job that Uk owns and Uk′ does not. Finally, we will
take every pair (Uk′ , Uk) of servers in that parallel class Pi

and repeat the procedure for all parallel classes.
By the end of this last stage 3, Uk′ has received all missing

values that it needs for the Reduce phase. Since the above
analysis holds for any value of k′, we have shown that our
communication scheme serves its purpose and all workers have
the necessary data to reduce their functions.

D. Reduce Phase

Using the values it has computed and received, Uk

reduces φ
(j)
k (1(j), . . . , N (j)) = α(ν(j)

k,1, ν
(j)
k,2, . . . , ν

(j)
k,N ) for all

k = 1, . . . , K and j = 1, . . . , J .
An instance of the above procedure is illustrated in the

following example.

Fig. 3. Stage 1 coded multicasts among owners of J1.

Example 5: Suppose that our task consists of J = 4 jobs.
For the j-th job, denoted Jj , we need to count Q = 6 words
given by the set A(j) = {χ(j)

1 , . . . , χ
(j)
6 } in a book consisting

of N = 6 chapters using a cluster of K = 6 servers. Jj is
associated with the j-th book and its files with the chapters
1(j), . . . , 6(j). Function φ

(j)
k , k = 1, . . . , Q (assigned to server

Uk) counts the word χ
(j)
k of A(j) in the book indexed by j.

We subdivide the original data set of each job into N = 6
files. The files of the j-th job are partitioned into three batches,
namely {1(j), 2(j)}, {3(j), 4(j)} and {5(j), 6(j)}. Exactly four
such batches are stored on each server (cf. Fig. 2). The owners
of the jobs are specified as follows.

X(1) = {U1, U3, U5}, X(2) = {U1, U4, U6},
X(3) = {U2, U3, U6} and X(4) = {U2, U4, U5}. (6)

For example, the files of job J1, {1(1), 2(1), . . . , 6(1)}, are
stored exclusively on U1, U3 and U5. Specifically, the three
batches of the first job are

B(1)
[3] = {1(1), 2(1)}, B(1)

[5] = {3(1), 4(1)}, B(1)
[1] = {5(1), 6(1)}.

Then, batch B(1)
[3] is stored on servers U1 and U5, B(1)

[5] on

U1 and U3 and, finally, B(1)
[1] on U3 and U5. Each server locally

stores μ = 1
3 of all the data sets.

We will clarify the three stages of our proposed Shuffle
phase by means of the following example.

• Stage 1: The owners of each job communicate among
themselves during this stage. Let us consider the group
of servers {U1, U3, U5} which are the owners of J1,
storing {1(1), 2(1), 3(1), 4(1)}, {3(1), 4(1), 5(1), 6(1)} and
{1(1), 2(1), 5(1), 6(1)}, respectively. Based on this allo-
cation policy, server U1 needs φ

(1)
1 evaluations of the

batch {5(1), 6(1)}, i.e., ν
(1)
1,5 and ν

(1)
1,6 for J1 or simply the

aggregate α(ν(1)
1,5 , ν

(1)
1,6) � ν

(1)
1,5 +ν

(1)
1,6 which is the sum of

the counts of word χ
(1)
1 in files 5(1) and 6(1). Similarly,

U3 needs α(ν(1)
3,1 , ν

(1)
3,2) and U5 needs α(ν(1)

5,3 , ν
(1)
5,4). Next,

we refer to Fig. 3. The compressed intermediate values
are represented by circle/green, star/blue and triangle/red.
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TABLE VI

STAGE 2 TRANSMISSIONS WITHIN GROUP {U1, U3, U6}

We further suppose that each value can be split into two
packets (represented by the left and right parts of each
shape). If U1 transmits left circle XOR left star, then U3

is able to cancel out the star part (since U3 also “maps”
{3(1), 4(1)}) and recover the circle part. Similarly, U5 can
recover the star part from the same transmission. Each of
these transmissions is useful to two servers. We can repeat
this process for the remaining jobs. The total number of
bits transmitted in this case is therefore 6B. The incurred
communication load is Lstage 1 = 6B

JQB = 1
4 .

• Stage 2: The groups communicating in this stage consist
of both owners and non-owners. The servers recover
values of jobs for which they haven’t stored any file.
Let G = {U1, U3, U6}. Observe from eq. (6) that there
is no job common to all three but each subset of two of
them shares a batch of a job they commonly own. The
remaining server needs an aggregate value of those files.
The values that each of U1, U3 and U6 needs as well as the
corresponding transmissions are illustrated in Table VI.
We denote the i-th packet of an aggregate value by α(·)[i].
It turns out that there are 4 possible such groups we can
pick. The total load is Lstage 2 = 4×3×B/2

JQB = 6B
JQB = 1

4 .
• Stage 3: Servers recover the remaining intermediate

values by receiving unicast transmissions during this last
stage. If we consider the same group as in stage 2,
i.e., G = {U1, U3, U6} then we can see that U1 still

misses values ν
(3)
1,1 , ν

(3)
1,2 , ν

(3)
1,3 and ν

(3)
1,4 of J3 or simply

their aggregate α(ν(3)
1,1 , ν

(3)
1,2 , ν

(3)
1,3 , ν

(3)
1,4). Observe that all

required files locally reside in the cache of U2 which can
transmit the value to U1. For the complete set of unicast
transmissions see Table VII. The load turns out to be
Lstage 3 = 6×2×B

JQB = 1
2 .

The communication load of all stages is then LCAMR = 1.
Similarly, the load achieved by the CCDC scheme of [1] for
the same storage fraction μ = 1/3 is LCCDC = 1. Nonetheless,
their approach would require a minimum of J =

(
6
3

)
= 20

distributed jobs to be executed, i.e., we can achieve the same
efficiency on a smaller scale.

E. Aggregated Multi-Job Communication Load Analysis

In the first stage, for each of the J jobs, each of the k owners
computes one aggregate and is associated with a unique
corresponding packet of it, of size B

k−1 . The communication
load is

Lstage 1 =
Jk B

k−1

JQB
=

k

K(k − 1)
.

The second stage involves the communication within all
possible qk−1(q − 1) groups that satisfy the desired property.
In each case, k servers transmit one value each, of length B

k−1

TABLE VII

NEEDED AGGREGATE VALUES AT THE END OF STAGE 2

and

Lstage 2 =
qk−1(q − 1)k B

k−1

JQB
=

(q − 1)k
K(k − 1)

.

Each server does not own J − qk−2 jobs. For each of them,
during stage 3, one transmission (of length B) from a server
in the same parallel class is sufficient. Thus,

Lstage 3 =
K
(
J − qk−2

)
B

JQB
=

q − 1
q

.

The total load is

LCAMR =
3∑

i=1

Lstage i =
k(q − 1) + 1

q(k − 1)
. (7)

F. Comparison With Other Schemes

The technique proposed in [1] demonstrates a load of

LCCDC =
(1 − μ)(μK + 1)

μK
. (8)

for a suitable storage fraction such that μK ∈ {1, . . . , K−1}.
Our storage requirement is equal to μ = k−1

K . For the same
storage requirement, eq. (8) yields

LCCDC =
(1 − k−1

K )(k−1
K K + 1)

k−1
K K

=
k(q − 1) + 1

q(k − 1)
.

We conclude that the loads induced by the two schemes
are identical. However, their approach fundamentally relies
on the requirement that the minimum number of jobs to be
executed is JCCDC, min =

(
K

μK+1

)
. Comparing this value with

our requirement for JCAMR = qk−1 and using a known bound
for the binomial coefficients, we deduce that [32]

JCCDC, min =
(

K

μK + 1

)
=
(

kq

k

)
(a)
≥
(

kq

k

)k (b)
> JCAMR, min,

where the bound of (a) is maximum when q = 2 and becomes
stricter for q > 2; however, for a fixed value of k, as q
increases the bound of (b) loosens and it turns out that our
requirement for the number of jobs becomes exponentially
smaller than that of CCDC (recall that JCAMR, min = qk−1).

G. Distributed Matrix-Vector Multiplication

Performing large matrix-vector multiplications is a key
building block of several machine learning algorithms. For
instance, during the forward propagation in deep neural net-
works [33] the output of the layer is the result of multiplying
the matrix of the input data set with the weight vector.
In what follows, we formulate the matrix-vector product as

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:33 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE VIII

TIME FOR COMPUTING 512 PRODUCTS Ab, m = 234000, n = 100 ON K = 20 SERVERS

a MapReduce operation and compare our algorithm against
the baseline method for the case when we have to simulta-
neously execute multiple such multiplications. Existing work
on the multi-job case does not include practical experiments.
Thus, we cannot compare with other schemes that examine
the computation-communication trade-off on multiple jobs.
Nevertheless, we believe that our experiments provide a good
demonstration of potential benefits of these operations on a
large scale.

Suppose that we want to compute Ab for a matrix A
(size m × Jn) with a vector b (size Jn × 1) in a distributed
manner on K servers. We assume K|m. We initially split
it column-wise into J blocks A(1), . . . ,A(J). Each block is
associated with one job. Specifically, the job indexed with j
involves multiplying A(j) (size m×n) with a vector b(j) (size
n × 1).

We will begin by explaining our model for the baseline
approach. First, we further partition each A(j) into qk block
matrices as follows

A(j) =

⎡
⎢⎢⎣

A(j)
11 . . . A(j)

1k
...

. . .
...

A(j)
q1 . . . A(j)

qk

⎤
⎥⎥⎦ . (9)

The corresponding decomposition of b(j) into blocks is as
follows

b(j) =
[
b
(j)
1 · · · b

(j)
n/k| · · · |b(j)

n−n/k+1 · · · b(j)
n

]T
. (10)

Each server stores and computes the product of exactly one
block of A(j), ∀j ∈ [J ] (there are K = kq of them) with
the appropriate subvector of b(j), during the Map phase.
Our Reduce policy is that each server will compute a subset
of the rows of c(j) = A(j)b(j) after processing at its
end. Specifically, server Ui is assigned to compute the rows
{(i − 1)m/K, . . . , im/K} of c(j) (note that we assume that
K|m). All K reducers receive k−1 products (size m/K×1)
for each job by servers mapping the same block-row of A(j)

and sum these results row-wise before transmitting them to the
master. The master machine concatenates them and constructs
the final result.

Let c(m, n, k) be the cost of multiplying two matrices of
dimension m × n and n × k. Then, the computation cost for
each server is Muncoded = J · c(m/q, n/k, 1).

The communication load is Lmult
uncoded = JK(k−1)B

JQB = k − 1
where, based on our prior notation, B = m

K T and T is the
number of bits used to represent a single entry of a matrix,
i.e., each transmission is the equivalent of a “compressed”
intermediate value (a column in this case).

We now formulate our CAMR scheme for this problem.
In this case, we split A(j) into k block-columns as

A(j) =
[
A(j)

1 , . . . , A(j)
k

]
.

For each job (point), we pick k owners (blocks) based on a
SPC-(k, k − 1) code that store a part of A(j) and b(j) [the
splitting of b(j) is the same as in Eq. (10)]. Specifically, each
owner stores a different set of k−1 block-columns (batches) of
A(j) and the corresponding parts of b(j). It computes all these
products during the Map phase. The non-owners do not store
any part of these matrices. The Reduce policy also remains
the same as in the baseline method.

The computation cost per server is MCAMR = qk−2(k− 1) ·
c(m, n/k, 1). The communication load has been computed in
Section V-E, eq. (7).

In theory, CAMR requires a computation overhead of

MCAMR

Muncoded
=

qk−2(k − 1) · c(m, n/k, 1)
J · c(m/q, n/k, 1)

= k − 1.

The theoretical gain we would expect in the Shuffle phase is

Lmult
uncoded

LCAMR
=

(k − 1)2q
k(q − 1) + 1

.

H. Matrix-Vector Multiplication Experimental Results and
Discussion

We serially ran multiple matrix-vector products on Amazon
EC2 clusters. The instance type used is x1e.2xlarge for the
master machine and r4.2xlarge for the workers. Our code is
available online [24]. The master machine decomposes each
input matrix and the corresponding vector and sends them to
the appropriate worker nodes.

Table VIII summarizes the results for our use case. The
impact of the Shuffle phase on the total execution time seems
to be greater than in the case of TeraSort and our scheme
reduces the overall time by up to 4.31×. In theory, our scheme
requires a computation overhead of 9. Indeed, based on
Table VIII the Map phase for our scheme is 8.77

1.01 ≈ 8.68 times
more expensive than that of the uncoded. The gain we would
expect in the Shuffle phase for the values of the parameters
is approximately 14.73. In practice, we have achieved a gain
of 408.11

52.74 ≈ 7.74. Nevertheless, if we consider equal transmis-
sion rates in both cases that speedup would be 169.1

90.857.74 =
14.41 which is very close to the prediction.

VI. CONCLUSIONS AND FUTURE WORK

In this work we presented a distributed computing protocol
by leveraging the properties of resolvable designs. These
designs can be generated from single parity-check codes. Our
techniques apply for the execution of a single job with arbi-
trary functions and a multi-job scenario where the functions
can be aggregated. Prior work has identified and proposed
techniques for exploring these tradeoffs for both problems.
However, in both cases those techniques require certain prob-
lem dimensions to be very large in the problem parameters.
Specifically, in the single-job case, they require a large number
of files, whereas in the multi-job case they require a large
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number of jobs. In practical scenarios, this is a serious issue
and adversely affects the job execution times. Our proposed
approaches work with significantly smaller number of subfiles
(single-job) and jobs (multi-job), respectively. We theoretically
analyze the performance of our schemes and also present
exhaustive experiments on Amazon EC2 platforms that con-
firm the performance advantages of our methods.

We point out that our number of subfiles is still exponential
in the problem parameters but with a much smaller exponent.
We emphasize that it remains well within the limits of popular
message-passing protocols such as Open MPI for many prac-
tical scenarios. Reducing this number further while continuing
to have a low communication load is an interesting direction
for future work. Our multi-job scheme (and prior work [1])
does not handle precedence constraints or a redundant Reduce
function assignment to the workers that naturally arise in some
MapReduce problems. Adapting our work to take these into
account would be another avenue for future work.

APPENDIX

Proof of Lemma 2

We shall refer to Algorithm 1 in order to show that each
server in G can recover its missing data chunk. For a group of
servers G = {U1, . . . , Uk} and the packets of the chunk D[j],
i.e., C = {D[j][1], . . . ,D[j][k − 1]} consider a complete graph
with the following set of vertices {G\{Uj}, C}; the matching
H [j] described in Algorithm 1 will be defined based upon
this graph, i.e., each vertex in {G \ {Uj}} will be matched
to a distinct vertex in C. Fix a pair of servers {Um, Uk} ⊂ G
and the packet Δm transmitted from Um to Uk. By canceling
out all terms of Δm that Uk locally stores, it can recover the
remaining term, i.e., H [k](Um) (note that Uk participates in
exactly k − 1 such matchings, i.e., in H [j], ∀j �= k). Keeping
Uk fixed, we repeat this process for every possible server
Um ∈ G \ {Uk}. Since each of them is associated with a
distinct packet of D[k] it follows that by receiving the k − 1
packets

{Δm : Um ∈ G \ {Uk}},
Uk can recover the following packets

{D[k][i] : Ui ∈ G \ {Uk}}.
Subsequently, Uk concatenates them in order to recover D[k].
Since this proof holds independent of the choice of Um,
we have shown that all servers can recover their missing
chunks. To conclude the argument, we note that since each
chunk is assumed to be of size B bits and it was split into
k−1 packets of size B/(k−1), the total amount of transmitted
data is Bk/(k − 1).

DETAILS OF TERASORT IMPLEMENTATION

We have implemented TeraSort on Amazon EC2 clusters
using our proposed approach. The implementation was per-
formed in C++ using the Open MPI library for communica-
tion among the processes of the master and the servers. Our
code builds on [27] and comparisons with the uncoded case
and the approach in [14] have been made.

TeraSort is a popular benchmark that measures the time to
sort a big amount of randomly generated data on a cluster.

The data set in TeraSort is such that each line of the file is a
key-value (KV) pair typically consisting of an integer key and
an arbitrary string value. The sorting is done based on the key.
It is not too hard to see that this KV formulation can be put
in on-to-one correspondence with the formulation in terms of
Map and Reduce functions (cf. Section IV-B).

A. Amazon EC2 Cluster Configuration

We used Amazon EC2 instances among which one served as
a master and the rest of them as servers (servers). The instance
type used is r3.large for the master machine and m3.large
for the servers. After placing the files to the carefully chosen
servers we also impose a limit of 100Mbps for both incoming
and outgoing traffic of all servers; this serves the purpose of
alleviating bursty TCP transmissions.

B. Data Set Description

For the TeraSort experiments we generated 12GB of total
data. Each row of the file holds a 10-byte key and its
corresponding 90-byte value. The TeraGen utility of Hadoop
distribution was used to randomly generate this data. The KV
pairs are lexicographically sorted with respect to the ASCII
code of their keys where the leftmost and the rightmost byte
are the most and the least significant byte, respectively.

C. Platform and Code Implementation Description

Our source code is available at [23]. The master machine
is responsible for placing the files in the local drives of
the servers and deciding the reducer responsibilities for each
server. It also initiates the MPI program to all servers. From
this point onwards, the master will only take time measure-
ments from the servers.

The overall sequence of steps in processing a given
job are: CodeGen → Map → Pack/Encode → Shuffle →
Unpack/Decode → Reduce. We explain these steps below.

• Code generation: All nodes (including the master) start
by generating the resolvable design based on our choice
of the parameters q and k. Next, the data set is split
into N files by the master and the appropriate files are
transmitted to each server based on Step 3 of Algorithm 2.
The master also broadcasts the keys that describe the
Reduce assignment.

• Map. For each file wa that server Bi,l has in its block,
it will compute {ν1,a, . . . , νQ,a} during the Map phase.

• Pack/Encode. For the uncoded implementation, we use
the Pack operation. The Pack stage stores all intermediate
values that will be sent to the same reducer in a contin-
uous memory array so that a single TCP connection for
each sender/receiver pair suffices (which may transmit
multiple KV pairs) when MPI_Send is called.3 In the
coded implementation encoded packets are created from
the mapped data as described in Algorithms 1, 2.

• Shuffle. For each shuffling group G a server belongs to,
it will broadcast an appropriate encoded packet to the rest
of the group.

3In the shuffling phase of the uncoded case, each server unicasts data to
a single receiver at any particular time, which is exactly the purpose of
MPI_Send call.
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• Unpack/Decode. In the uncoded implementation we use
the Unpack operation which simply deserializes the
received data to a list of KV pairs. In the coded imple-
mentation the intermediate values are decoded locally on
each server from the received data.

• Reduce. The Reduce function is applied on the
unpacked/decoded data.
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