
Leveraging Coding Techniques for Speeding up
Distributed Computing

Konstantinos Konstantinidis and Aditya Ramamoorthy
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

Email: {kostas, adityar}@iastate.edu

Abstract—Large scale clusters running MapReduce, Spark etc.
routinely process data that are on the orders of petabytes or
more. The philosophy in these methods is to split the overall job
into smaller tasks that are executed on different servers; this is
called the map phase. This is followed by a data shuffling phase
where appropriate data is exchanged between the servers. The
final reduce phase, completes the computation.

Prior work has explored a mechanism for reducing the overall
execution time by operating on a computation vs. communication
tradeoff. Specifically, the idea is to run redundant copies of
map tasks that are placed on judiciously chosen servers. The
shuffle phase exploits the location of the nodes and utilizes coded
transmission. The main drawback of this approach is that it
requires the original job to be split into a number of map
tasks that grows exponentially in the system parameters. This
is problematic, as we demonstrate that splitting jobs too finely
can in fact adversely affect the overall execution time.

In this work we show that one can simultaneously obtain low
communication loads while ensuring that jobs do not need to be
split too finely. Our approach uncovers a deep relationship be-
tween this problem and a class of combinatorial structures called
resolvable designs. We present experimental results obtained on
Amazon EC2 clusters for a widely known distributed algorithm,
namely TeraSort. We obtain over 4.69× improvement in speedup
over the baseline approach and more than 2.6× over current state
of the art.

I. INTRODUCTION

In recent years, there has been a surge in the usage of
various cluster computing frameworks such as MapReduce [1],
Hadoop [2] and Spark [3]. The era of bigdata analytics [4]
whereby a large amount of data needs to be processed in a fast
manner has fueled this growth. In these applications, datasets
are often so large that they cannot be housed in the memory
and/or the disk of any one computer. Thus, the data is typically
distributed across a number of nodes. Each node performs
its own local computation, following which there is a shuffle
phase where the nodes communicate among themselves. At
this point the nodes perform the final computation. Henceforth,
we refer to this as the MapReduce framework.

The MapReduce framework has proven to be quite versatile
and large scale clusters in industry and academia routinely
process terabytes of data using this approach. It is impor-
tant to note that the framework intertwines computation and
communication. Specifically, multiple servers allow for parallel
computation; yet data needs to be exchanged between them to
complete the processing of the job. It is well-recognized that

This work was supported in part by the National Science Foundation by
grants CCF-1320416 and CCF-1718470.

the data shuffling phase that occurs between the map and the
reduce steps, results in a significant amount of data movement.
In fact, the data shuffling phase limits the performance of sev-
eral applications [5]. Reference [6] suggests that for distributed
machine learning algorithms the communication time can take
up over 50% of the overall job completion time.

The work of [7], [8] introduced a technique that allows
a MapReduce-like system to operate on a tradeoff between
communication and computation. For instance, consider a job
being processed on very large file. The first step typically is
to subdivide this file in smaller subfiles that can be processed
on individual servers. The idea of [7], [8] is to process the
same subfile at r > 1 carefully chosen servers. The choice
of the servers allows for the usage of coded transmissions
in the shuffle phase that can substantially reduce the induced
communication load. For a given network throughput rate, a
lower communication load translates into lesser time taken in
the shuffle phase. Thus, the overall execution time of a given
job can be reduced if the increased map phase execution time
can be offset by the reduction in the shuffling time. The ideas in
these works have their origins in the problem of coded caching
[9].

A. Main Contributions of our work

While the approach of [7], [8] is promising, there are
some factors that limit the performance of their scheme. The
approach of [10], [7], [8] crucially relies on subdividing the
original file into a large number of subfiles. Henceforth we
refer to the number of subfiles as the subpacketization level.
In this work, we demonstrate that high subpacketization levels
can significantly degrade the performance of the system. We
propose alternate mechanisms that allow us to seamlessly
tradeoff computation vs. communication, but with acceptable
levels of subpacketization. Our mechanisms are based on a nat-
ural link between error correcting codes, combinatorial objects
known as resolvable designs and MapReduce-like protocols
(related links in a different context were explored in [11]).
We note here that combinatorial designs have recently been
explored to address issues in distributed storage systems [12],
function computation over networks [13] and coded caching
[11], [14]. We present exhaustive experimental comparisons
with prior work that demonstrate the efficacy of our method.

This paper is organized as follows. Section II addresses our
problem formulation. The specification of our protocol and
its corresponding analysis appear in Section III. Details of

978-1-5386-4727-1/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

our implementation on Amazon EC2 clusters can be found in
Section IV. Section V discusses our experimental results and
several implementation related issues. Section VI concludes
the paper. Owing to space limitations, certain proofs and in-
depth discussions of results have been omitted from this paper.
These can be found at [15].

II. PROBLEM FORMULATION

We now discuss the problem formulation more formally.
Our presentation here is based closely on [7]. There are N
input subfiles that correspond to disjoint parts of the entire
file to be processed. There are Q arbitrary output functions
that need to be computed across these N subfiles. There are
a total of K homogeneous servers, i.e., machines that have
similar computational power. For instance, in a word counting
example, the subfiles could be the chapters of a book and the
output functions are the word counts of a specific set of words.
The subfiles will be denoted by w1, . . . , wN and the output
functions ϕj , j = 1, . . . , Q. Each function ϕj depends on all
the subfiles w1, . . . , wN . We assume that the j-th function can
be computed by a map phase followed by a reduce phase, i.e.,

ϕj(w1, . . . , wN) = hj(gj,1(w1), . . . , gj,N (wN)).

Here, gn = (g1,n, . . . , gQ,n) “maps” the subfile wn into
Q intermediate values νj,n, j = 1, . . . , Q each of which is
assumed to be of size B bits. The function hj maps the
intermediate values νj,n on all subfiles into a reduced value
hj(gj,1(w1), . . . , gj,N (wN)).

Example 1. Suppose that we consider the problem of counting
Q = 4 words of a collection A = {and, if, when, the} in a
book consisting of N = 4 chapters in a cluster with K = 4
servers. In this case the subfiles w1, . . . , w4 are the chapters
and ϕi, i = 1, . . . , Q correspond to the counts of the words
in A in the entire book, e.g., ϕ1(w1, . . . , w4) would be the
number of occurrences of the word “and” in the book. Suppose
that we define gn to be the function that returns the counts of
all the words in A in chapter wn. Let us assume that the
i-th slave is assigned subfile wi for all values of i. In this
case it is evident that in the map phase, server i computes
gi on its assigned subfile wi for i = 1, . . . , 4. In the reduce
phase, each server is given the responsibility of finding the
overall count in the book of one specific word, e.g., suppose
that server 1 reduces the word “and”. In this case, it is evident
that ϕ1(w1, . . . , wN) can be computed as

ϕ1(w1, . . . , wN) = h1(g1,1(w1), . . . , g1,N (wN)).

In particular, the function h1 simply corresponds to the sum
of the counts of “and” on the individual chapters.

We define r as the number of servers that map each subfile
and for the remainder of the paper, we refer to it as the
computation load.

Definition 1. The communication load L ∈ [0, 1] of a certain
scheme is defined as the ratio of the total number of bits
transmitted in the data shuffling phase to QNB.

In Example 1, at the end of the map phase, each node needs
three values from the other nodes. Thus, the total number of

Fig. 1. Proposed placement scheme for K = 6 servers and N = 4 subfiles,
denoted {1, 2, 3, 4} and represented by colored squares, each assigned to
some server. The red dashed boxes show the partition of the files into parallel
classes.

bits transmitted would be 4 × 3 × B = 12B. Thus, the com-
munication load of the system will be L = 12B/16B = 3/4.

We now present an example which demonstrates that in-
creasing r can translate into lower communication loads.

Example 2. Consider a system with K = 6 servers, a
computation load of r = 3 and Q = 6 functions (e.g., word
counts) that need to be computed. In our approach we would
subdivide the original job into N = 4 subfiles (more generally
any multiple of 4 can be used) that will be assigned to the
servers as demonstrated in Fig. 1. At the end of the map
step, each server would have computed the Q functions on its
assigned map tasks. Suppose that the i-th server is responsible
for reducing the i-th function. This would imply, for example,
that server U1 needs the first function’s evaluation on subfiles
w3 and w4.

The key idea of our approach is for each server to transmit a
packet that is simultaneously useful to multiple servers. For ex-
ample, let us consider the group of servers G1 = {U1, U3, U6}
that were assigned subfiles {w1, w2}, {w1, w3} and {w2, w3},
respectively. Then it is evident that at the end of the map
phase, server U1 wants ν1,3, server U3 wants ν3,2 and server
U6 wants ν6,1. Let the intermediate value νj,n be encapsulated
into a packet of size B bits, denoted by p(νj,n). Furthermore,
consider subdividing this packet into two parts p(νj,n)[1] and
p(νj,n)[2] (with size B/2 bits).

Now consider the set of transmissions specified in Table
I. Note that server U1 contains subfiles w1 and w2 and can
therefore compute all Q functions associated with them. Thus,
it can transmit p(ν3,2)[1] ⊕ p(ν6,1)[2] as specified in row
1 of the table. Furthermore, it can be observed that this
transmission is simultaneously useful to both servers U3 and
U6. In particular, server U3 already knows p(ν6,1)[2] and can
therefore decode p(ν3,2)[1] which it wants. Likewise, server
U6 already knows p(ν3,2)[1] and can decode p(ν6,1)[2] that
it wants. In a similar manner, it can be verified that each
of the transmissions in Table I benefit two servers of the
corresponding group. It turns out that the process of picking
the servers to consider together can be made systematic; in
addition to server group G1 that we just considered, we can
pick three others: G2 = {U1, U4, U5}, G3 = {U2, U3, U5}
and G4 = {U2, U4, U6} which will result in all the servers
obtaining their desired values.

The total number of bits transmitted in this case is therefore
4×3×B/2 = 6B; thus, the corresponding communication load
is 6B

QNB = 0.25. In contrast, uncoded transmission from the
different nodes would have required a total of 2×6×B = 12B
bits to be transmitted, corresponding to a communication load
of 0.5. Thus, the proposed approach reduces the communica-

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CODED TRANSMISSIONS WITHIN ALL GROUPS IN EXAMPLE 2

Group Server Transmission

G1

U1 p(v3,2)[1]⊕ p(v6,1)[2]
U3 p(v6,1)[1]⊕ p(v1,3)[2]
U6 p(v3,2)[2]⊕ p(v1,3)[1]

G2

U1 p(v5,2)[1]⊕ p(v4,1)[1]
U4 p(v5,2)[2]⊕ p(v1,4)[1]
U5 p(v4,1)[2]⊕ p(v1,4)[2]

G3

U2 p(v5,3)[1]⊕ p(v3,4)[1]
U3 p(v5,3)[2]⊕ p(v1,1)[1]
U5 p(v3,4)[2]⊕ p(v1,1)[2]

G4

U2 p(v6,4)[1]⊕ p(v4,3)[1]
U4 p(v6,4)[2]⊕ p(v2,2)[1]
U6 p(v2,2)[2]⊕ p(v4,3)[2]

tion load in the shuffle phase by half.

We note here that the original work of [7] promises a com-
munication load of Lcoded(r) =

1
r (1−

r
K) for r ∈ {1, . . . ,K}.

However, crucially this result assumes that

N =

(
K

r

)
η1, where η1 is a positive integer.

It is evident that N grows very rapidly for their scheme. In
Section V, we demonstrate that in real-life experiments the
idealized analysis does not hold and the execution time suffers
as a result of this.

For instance, for Example 2 above, their communication
load would be 1/6 (which is lower). However, their approach
would require the original file to be split into

(
6
3

)
= 20

subfiles, i.e., their scheme only works when N = 20. In
contrast, the scheme proposed in Example 2 works with N = 4
which is much smaller. In this work, we present significant
generalizations of the basic approach in Example 2.

III. IMPROVED SCHEMES FOR CODED DISTRIBUTED
COMPUTATION FROM RESOLVABLE DESIGNS

We begin with some notions from combinatorial design
theory [16].

Definition 2. A design is a pair (X ,A) consisting of

1) a set of elements (points), X , and
2) a family A (i.e. multiset) of nonempty subsets of X called

blocks, where each block has the same cardinality.

Thus, a design is simply a set system, where each set (or
block) has the same cardinality. It turns out that examining
designs that have specific structure is especially useful in the
distributed computing context. In this work, we will make use
of resolvable designs, a special category of block designs.

Definition 3. A subset P ⊂ X in a design (X,A) is said to
be a parallel class if for Xi ∈ P and Xj ∈ P with i ̸= j
we have Xi ∩ Xj = ∅ and ∪{j:Xj∈P}Xj = X . A partition
of A into several parallel classes is called a resolution, and
(X,A) is said to be a resolvable design if A has at least one
resolution.

A simple example of a resolvable design is obtained by
considering all 2-subsets of {1, . . . , 4}.

Example 3. Let X = {1, 2, 3, 4} and A =
{{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}}. The (X,A)
forms a resolvable design with the following parallel classes.

P1 = {{1, 2}, {3, 4}},
P2 = {{1, 3}, {2, 4}}, and
P3 = {{1, 4}, {2, 3}}.

We note here that Example 2 used precisely this design, when
specifying the subpacketization and the placement.

It turns out that there is a systematic procedure for con-
structing resolvable designs, where the starting point is an error
correcting code [17]. We explain this procedure below.

Let Zq denote the additive group of integers modulo q. The
generator matrix of an (k, k − 1) single parity-check (SPC)
code over Zq

1 is defined by

GSPC =

 1

Ik−1

...
1

 . (1)

This code has qk−1 codewords. The codewords are c =
u · GSPC for each possible message vector u. The code is
systematic so that the first k − 1 symbols of each codeword
are the same as the symbols of the message vector. The qk−1

codewords ci computed in this manner are stacked into the
columns of a matrix T of size k × qk−1.

T = [cT1 , c
T
2 , · · · , cTqk−1]. (2)

The corresponding resolvable design is constructed as follows.
Let XSPC = [qk−1] (we use [n] to denote the set {1, 2, . . . , n}
throughout) represent the point set of the design. We define the
blocks as follows. For 0 ≤ l ≤ q−1, let Bi,l be a block defined
as

Bi,l = {j : Ti,j = l}.

The set of blocks ASPC is given by the collection of all Bi,l

for 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1 so that |ASPC | = kq. The
following lemma (see [15, Appendix] for proof) shows that
this construction always yields a resolvable design.

Lemma 1. The above scheme always yields a resolvable
design (XSPC ,ASPC) with XSPC = [qk−1], |Bi,l| = qk−2

for all 1 ≤ i ≤ k and 0 ≤ l ≤ q − 1. The parallel classes are
analytically described by Pi = {Bi,l : 0 ≤ l ≤ q − 1}, for
1 ≤ i ≤ k.

Example 4. The generator matrix of this (3, 2) SPC code over
Z2 (binary) is given by

GSPC =

[
1 0 1
0 1 1

]
.

The matrix T can be obtained as

T = [cT1 , c
T
2 , c

T
3 , c

T
4] =

0 0 1 1
0 1 0 1
0 1 1 0

 .

1We emphasize that this construction works even if q is not a prime, i.e.,
Zq is not a field.

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Proposed Protocol
1: Input: File W , Q functions; number of servers K = k×q.

K divides Q.
2: Use a (k, k − 1) SPC code to generate a design (X ,A)
3: Split W into qk−1 disjoint subfiles, w1, . . . , wqk−1 .
4: Assign subfiles to servers such that server Bi,j is assigned

subfile wℓ if ℓ ∈ Bi,j .
5: Choose an equal-size partition of [Q] to obtain the sets

ϕBi,j for i = 1, . . . , k and j = 0, . . . , q − 1.
6: Execute the Map phase on each of the servers.
7: Choose all possible sets {B1,j1 , B2,j2 , . . . , Bk,jk} where

jℓ ∈ {0, . . . , q − 1}, such that ∩k
ℓ=1Bℓ,jℓ = ∅ and store

them in a collection G.
8: for γ ∈ [Q/K] do
9: for each group G = {B1,j1 , B2,j2 , . . . , Bk,jk} ∈ G do

10: Determine ∆G
ℓ = νϕBi,j [γ],∩k ̸=ℓBk,jk

for ℓ =

1, . . . , k.
11: Split packet p(∆G

ℓ) into k− 1 parts at each server
where it is available.

12: Label each split of p(∆G
ℓ), arbitrarily with distinct

labels from 1, . . . , k − 1.
13: For each ℓ ∈ [k], server Bℓ,jℓ transmits⊕

m̸=ℓ

p(∆G
m)[label(∆G

m, Bℓ,jℓ)]

14: end for
15: end for
16: Execute Reduce phase on each of the servers.

It can be observed, e.g., that B1,0 = {1, 2} and B1,1 = {3, 4}
so that they form a parallel class. In fact, this construction
returns the resolvable design considered in Example 3.

A. From resolvable designs to protocol specification

The main idea in our work is to use an appropriate re-
solvable design to specify the number of subfiles, the map
task assignments and the messages transmitted in the shuffle
phase for a given distributed computing job. We explain this
correspondence next.

Consider a file W on which Q functions need to be
computed and suppose that we have access to K servers; we
assume that Q is a multiple of K. In Algorithm 1, we present
the steps that specify the entire protocol. The protocol can
be understood as follows. We choose an integer q such that
q divides K, i.e., K = k × q. Next, we form a (k, k − 1)
SPC code and the corresponding resolvable design using the
aforementioned procedure. The point set X = [qk−1] and the
block set A will be such that |A| = kq. The blocks of A will
be indexed as Bi,j , i = 1, . . . , k and j = 0, 1, . . . , q − 1.

We associate the point set X with the subfiles, i.e., N =
|X | = qk−1 and the block set A with the servers. The map task
assignment follows the natural incidence between the points
and the blocks, i.e., server Bi,j is responsible for executing the
map tasks on the set of subfiles Map[Bi,j] = {wℓ | ℓ ∈ Bi,j}.
Thus, at the end of the map phase, server Bi,j has computed
the Q intermediate value on the subfiles in Map[Bi,j].

Recall that we assume that K divides Q. Thus, each server
is responsible for reducing Q/K functions. We let ϕBi,j ⊂
[Q] represent the set of functions assigned for reduction to
server Bi,j . The sets ϕBi,j form a partition of [Q]. For ease
of notation, we let ϕBi,j [ℓ] represent the ℓ-th function in the
set ϕBi,j ; ℓ ranges from 1 to Q/K.

Following the map phase, in the shuffle phase, each server
Bi,j needs intermediate values from other servers so that it has
enough information to reduce the functions in ϕBi,j . In this
step we transmit coded packets that are simultaneously useful
to multiple servers. Towards this end we form a collection of
user groups by choosing one block from each parallel class
according to the rule in Step 7 of the protocol, i.e., we choose
servers B1,j1 , B2,j2 , . . . , Bk,jk such that ∩k

ℓ=1Bℓ,jℓ = ∅. For a
given user group G (of size k) we can show that each server
in G can transmit a useful message, denoted ∆G

ℓ , to k − 1
other servers where ℓ ∈ {1, . . . , k} represents the label of
the transmitting server. Each server in G is assigned a unique
label according to a bipartite graph (see [15, Section III.C]
for details). Furthermore, we can show that considering all
possible user groups allows the shuffle phase to achieve its
objective, i.e., at the end of the shuffle phase, all servers have
enough information to execute the reduce phase. An instance
of the shuffle phase equations was discussed in Example 2 (see
Table I).

B. Communication load analysis

We now present an analysis of the achieved communication
rate. The proof of correctness of our protocol and a detailed
communication load analysis can be found in [15, Section
III.C]. In the uncoded case, each server needs QN/K inter-
mediate values νj,n’s to execute its reduce phase. Note that
each server already has rN/K ×Q/K of them. Thus, in the
shuffle phase the communication load is given by

Luncoded =
K(QN/K − rQN/K2)B

QNB

= 1− r

K
.

On the other hand, for our scheme, the number of bits
transmitted in shuffle phase is given by

qk−1(q − 1) ·B k

k − 1
· Q
K

.

Thus, the communication load is given by

Lprop =
qk−1(q − 1) ·B k

k−1 · Q
K

QNB

=
1

k − 1

(
1− k

K

)
,

where the second equality above is obtained by using the fact
that N = qk−1 and K = kq.

Next, note that for our proposed scheme the computation
load is k, i.e., r = k. Thus, we reduce the overall communica-
tion load by a factor of 1

r−1 with respect to an uncoded system.
In contrast, the approach of [7], reduces the communication
load by a factor of 1

r . However, this comes at the expense of
a large N as discussed previously.

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SPECIFICATIONS OF THE AMAZON EC2 MACHINES OF THE CLUSTER

Machine
role

Instance
type

Virtual
CPUs Memory Storage

Master r3.large 2 15.25GB 32GB SSD
Server m3.large 2 7.5GB 32GB SSD

IV. DETAILS OF IMPLEMENTATION

We have implemented TeraSort on Amazon EC2 clusters
using our proposed approach. The implementation was per-
formed in C++ using the Open MPI library for communication
among the processes of the master and the servers. Our code
builds on [18] and comparisons with the uncoded case and the
approach of [8] have been made.

A. Data set description

We used a 12GB data set such that each line of the file
is a key-value (KV) pair consisting of an integer key and a
arbitrary string value. The sorting is done based on the key.
It is not too hard to see that this KV formulation can be put
in on-to-one correspondence with the formulation in terms of
map and reduce functions (cf. Section II).

B. Amazon EC2 cluster configuration

We used Amazon EC2 instances among which one served
as a master and the rest of them as slaves (servers). The
specifications of these machines are given in Table II. After
placing the subfiles to the carefully chosen servers we also
impose a limit of 100Mbps for both incoming and outgoing
traffic of all machines2. This serves the purpose of alleviating
bursty TCP transmissions.

C. Platform and code implementation description

The source code is in C++ and we used the Open MPI li-
brary, version 1.10.2, for communication among the processes
of the master and the servers. Our source code repository is
available at [19].

The overall sequence of steps in processing a given job
are: CodeGen → Map → Pack/Encode → Shuffle → Un-
pack/Decode → Reduce. We explain these steps below.
• Code generation: All nodes (including the master) start by

generating the resolvable design based on our choice of the
parameters q and k. Next, the data set is split into N subfiles
by the master and the appropriate subfiles are transmitted
to each slave based on Step 4 of the protocol.

• Map. For each subfile wa that server Bi,l has in its block,
it will compute {ν1,a, . . . , νQ,a} during the Map phase.

• Pack/Encode. For the uncoded implementation, we use the
Pack operation. The Pack stage stores all intermediate
values that will be sent to the same reducer in a continuous
memory array so that a single TCP connection for each
sender/receiver pair suffices (which may transmit multiple
KV pairs) when MPI_Send is called3.

2In order to manipulate the traffic control settings, we use the Linux tc
command

3In the Shuffling phase of the uncoded case, each server unicasts data
to a single receiver at any particular time, which is exactly the purpose of
MPI_Send call.

In the coded implementation encoded packets are created
from the mapped data as described in Algorithm 1.

• Shuffle. For each shuffling group G a server belongs to, it
will broadcast an appropriate encoded packet to the rest of
the group.

• Unpack/Decode. In the uncoded implementation we use the
Unpack operation which simply deserializes the received
data to a list of KV pairs. In the coded implementation the
intermediate values are decoded locally on each server from
the received data.

• Reduce. The reduce function is applied on the un-
packed/decoded data.

V. RESULTS AND DISCUSSION

A. Experimental Results

Tables III and IV contain the results of TeraSort using our
approach and comparisons with the approach of [8]. There
are approximately 130× 106 KV pairs to be sorted. Table III
presents the time each phase needed to completed including the
memory allocation time. We have included a column for the
total time that omits the memory allocation cost and another
column that shows the speedup in that case. Table IV presents
only the memory allocation time of certain MapReduce phases
for the same experiments. The need to take into account
the memory allocation cost comes from the fact that for
data sets at this scale, dynamic memory allocation on the
heap has a non-negligible impact on the total time. We note
here that the results in [8] are generated using the code in
[18] which explicitly ignores the memory allocation time (cf.
communication with the first author of [8]). We emphasize
however, that the results in Table III indicate that our approach
is consistently superior whether or not one takes into account
the memory allocation time.

To understand the effect of choosing different values of N ,
we applied our algorithm with different values of (k, q) =
(r, q) pairs.

We observe from Table III that if we account for memory
allocation cost, our scheme achieves up to 4.69× speedup
compared to the uncoded TeraSort whereas if we ignore this
code our schemes demonstrates an improvement of up to
5.51×. Moreover, the gain over the prior coded TeraSort
scheme, if we compare the best time reported by each scheme,
can go up to 4.69/1.56 ≈ 3.01× (when including memory al-
location time) or 5.51/2.30 ≈ 2.4× (when excluding memory
allocation time). According to the assumptions of our scheme,
the possible values of r for K = 16 servers are 1, 2, 4 and 8
but based on the rate analysis of Section III-B only 4 and 8
would yield a gain which is the reason we chose those values.
We note here that the shuffle phase results corresponding to
r = 8 for prior work could not be obtained as their program
crashed. A more detailed discussion about Tables III and IV
can be found in [15, Section V.A].

B. Discussion

The major issue of the prior scheme [8] is the large value
of N that it needs. This translates into a large number (

(
K
r+1

)
)

of user groups in the shuffling phase.

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

TABLE III
MAPREDUCE TIME FOR SORTING 12GB DATA ON 16 SERVER NODES INCLUDING THE MEMORY ALLOCATION COST

CodeGen Map Pack/
Encode Shuffle Unpack/

Decode Reduce
Total Time Speedup

Rate
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

(sec.)
(Mbps.)w/MA w/out

MA w/MA w/out
MA

Uncoded: - 5.71 11.75 1105.64 4.46 12.88 1140.44 1126.68 100.83
Prior: r = 3 5.82 17.94 229.80 455.05 6.23 14.54 729.38 496.76 1.56× 2.27× 64.79
Prior: r = 5 26.78 29.99 1000.15 297.28 8.16 16.47 1378.83 490.28 0.83× 2.30× 61.04
Prior: r = 8 38.41 51.03 1128.16 - - - - - - - -

Proposed: r = 4 0.64 25.91 9.93 307.15 6.91 17.29 367.83 352.91 3.10× 3.19× 88.47
Proposed: r = 8 0.61 62.46 26.22 127.43 8.38 17.85 242.95 204.58 4.69× 5.51× 62.68

TABLE IV
MEMORY ALLOCATION COST FOR SORTING 12GB DATA ON 16 SERVER NODES

Map Pack/Encode Unpack/Decode Total Time
(sec.) (sec.) (sec.) (sec.)

Uncoded: 2.32 9.17 2.27 13.76
Prior: r = 3 6.87 223.16 2.59 232.62
Prior: r = 5 11.29 874.14 3.12 888.55
Prior: r = 8 18.03 968.48 - -

Proposed: r = 4 9.91 1.85 3.16 14.92
Proposed: r = 8 22.01 13.17 3.19 38.37

This number can be prohibitive for today’s High Perfor-
mance Computing (HPC) communication protocols like the
Message Passing Interface (MPI). This is because all MPI
communication is associated with a communicator that de-
scribes the communication context and an associated group of
processes, as seen in [20]. But, the cost of splitting the initial
communicator into smaller communicators each of which
facilitates the communication within a group is non-negligible
[21]. Specifically, based on the experiments we performed on
our cluster for this scheme of splitting the cost is exponential
in r and can easily dominate the overall MapReduce execution.

Another point to consider is that most MPI libraries support
a limited number of communicators that can easily be exceeded
by

(
K
r+1

)
, even for relatively small numbers of K and r, thus

rendering the prior scheme impossible to implement.
More specifics on the above issues and some of our exper-

iments that illustrate them can be found in [15, Section V.B].

VI. DIRECTIONS FOR FUTURE WORK

For the purposes of this paper the cluster was assumed
homogeneous, i.e., consisting of similar servers connected via
an error-free shared link. An interesting extension would be
to examine potential benefits of resolvable designs on hetero-
geneous clusters where the nodes have potentially different
storage, memory and processing capabilities.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[2] “Apache Hadoop.” [Online]. Available: http://hadoop.apache.org/
[3] “Apache Spark.” [Online]. Available: http://spark.apache.org
[4] A. Cuzzocrea, I.-Y. Song, and K. C. Davis, “Analytics over Large-scale

Multidimensional Data: The Big Data Revolution!” in Proceedings of the
ACM 14th International Workshop on Data Warehousing and OLAP, ser.
DOLAP ’11, 2011, pp. 101–104.

[5] Y. Guo, J. Rao, and X. Zhou, “iShuffle: Improving Hadoop Performance
with Shuffle-on-Write,” in Proceedings of the 10th International Con-
ference on Autonomic Computing (ICAC 13), San Jose, CA, 2013, pp.
107–117.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging Data Transfers in Computer Clusters with Orchestra,” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, Aug. 2011.

[7] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A Fundamen-
tal Tradeoff Between Computation and Communication in Distributed
Computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109–128, Jan 2018.

[8] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr,
“Coded TeraSort,” in IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), May 2017, pp. 389–398.

[9] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014.

[10] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2015, pp. 964–971.

[11] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. on Info. Th.,
vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[12] O. Olmez and A. Ramamoorthy, “Fractional repetition codes with
flexible repair from combinatorial designs,” IEEE Trans. on Info. Th.,
vol. 62, no. 4, pp. 1565 –1591, 2016.

[13] A. S. Tripathy and A. Ramamoorthy, “Sum-networks from incidence
structures: construction and capacity analysis,” IEEE Trans. on Info. Th.,
vol. 64, no. 4, pp. 3461–3480, May 2018.

[14] L. Tang and A. Ramamoorthy, “Coded caching for networks with the
resolvability property,” in IEEE Intl. Symposium on Info. Th., 2016.

[15] K. Konstantinidis and A. Ramamoorthy, “Leveraging Coding Techniques
for Speeding up Distributed Computing,” 2017 [Online] Available:
https://arxiv.org/pdf/1802.03049.

[16] D. R. Stinson, Combinatorial Designs: Constructions and Analysis.
Springer, 2004.

[17] S. Lin and D. J. Costello, Error Control Coding, 2nd Ed. Prentice Hall,
2004.

[18] “Repository of TeraSort for prior implementation.” [Online]. Avail-
able: https://github.com/AvestimehrResearchGroup/Coded-TeraSort/
tree/IgnoreMemoryTime

[19] “SPC Coded TeraSort repository.” [Online]. Available: https://bitbucket.
org/kkonstantinidis/codedterasort

[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (3rd Ed.): Portable
Parallel Programming with the Message-Passing Interface. Cambridge,
MA, USA: MIT Press, 2014.

[21] P. Sack and W. Gropp, A Scalable MPI Comm split Algorithm for
Exascale Computing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 1–10.

Authorized licensed use limited to: Iowa State University. Downloaded on June 23,2020 at 19:13:29 UTC from IEEE Xplore. Restrictions apply.

