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Erasure Coding for Distributed Matrix Multiplication for
Matrices With Bounded Entries

Li Tang , Konstantinos Konstantinidis, and Aditya Ramamoorthy

Abstract— Distributed matrix multiplication is widely used in
several scientific domains. It is well recognized that computation
times on distributed clusters are often dominated by the slowest
workers (called stragglers). Recent work has demonstrated that
straggler mitigation can be viewed as a problem of designing
erasure codes. For matrices A and B, the technique essentially
maps the computation of AT B into the multiplication of smaller
(coded) submatrices. The stragglers are treated as erasures in
this process. The computation can be completed as long as
a certain number of workers (called the recovery threshold)
complete their assigned tasks. We present a novel coding strategy
for this problem when the absolute values of the matrix entries
are sufficiently small. We demonstrate a tradeoff between the
assumed absolute value bounds on the matrix entries and the
recovery threshold. At one extreme, we are optimal with respect
to the recovery threshold, and on the other extreme, we match
the threshold of prior work. Experimental results on cloud-based
clusters validate the benefits of our method.

Index Terms— Distributed computing, erasure codes,
stragglers.

I. INTRODUCTION

THE multiplication of large-dimensional matrices is a key
problem that is at the heart of several big data computa-

tions. For example, high-dimensional deep learning problems
often require matrix-vector products at every iteration. In most
of these problems the sheer size of the matrices precludes com-
putation on a single machine. Accordingly, the computation
is typically performed in a distributed fashion across several
computation units (or workers). The overall job execution time
in these systems is typically dominated by the slowest worker;
this is often referred to as the “straggler problem”.

In recent years, techniques from coding theory have been
efficiently utilized in mitigating the effect of stragglers.
As pointed out in [1] (see [1, Appendix B]), this issue can
be viewed as equivalent to coding for fault tolerance over a
channel where the stragglers can be viewed as erasures.

More specifically, the work of [1] considers the distributed
computation of the product of two large matrices AT and
B. Matrices A and B are first partitioned into p × m and
p×n blocks of submatrices of equal size by the master node.
Each worker is assumed to have enough memory to store the
equivalent of a single submatrix of A and a single submatrix
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of B. The master node does some basic processing on its end
and sends appropriately coded submatrices to each worker. The
workers multiply their stored (coded) submatrices and return
the result to the master. The key result of [1] shows that the
product ATB can be recovered as long as any τ = pmn+p−1
workers complete their computation; the value τ is called the
recovery threshold of the computation.

Interestingly, similar ideas (relating matrix multiplication
to polynomial interpolation) were investigated in a different
context by Yagle [2] in the mid 90’s. However, the motivation
for that work was fast matrix multiplication using pseudo-
number theoretic transforms, rather than fault tolerance. There
have been other contributions in this area [3]–[7] as well, some
of which predate [1].

Main Contributions

In this work, we demonstrate that as long as the entries in A
and B are bounded by sufficiently small numbers, the recovery
threshold (τ ) can be significantly reduced as compared to the
approach of [1]. Specifically, the recovery threshold in our
work can be of the form p�mn + p� − 1 where p� is a divisor
of p. Thus, we can achieve thresholds as low as mn (which is
optimal), depending on our assumptions on the matrix entries.

We show that the required upper bound on the matrix
entries can be traded off with the corresponding threshold in
a simple manner. Finally, we present experimental results that
demonstrate the superiority of our method via an Amazon Web
Services (AWS) implementation.

II. PROBLEM FORMULATION

Let A (size v × r) and B (size v × t) be two integer
matrices.1 We are interested in computing C � AT B in a
distributed fashion. Specifically, each worker node can store a
1/mp fraction of matrix A and a 1/np fraction of matrix B.
The job given to the worker node is to compute the product
of the submatrices assigned to it. The master node waits
for a sufficient number of the submatrix products to be
communicated to it. It then determines the final result after
further processing at its end. More precisely, matrices A and
B are first block decomposed as follows:

A = [Aij ], 0 ≤ i < p, 0 ≤ j < m, and

B = [Bkl], 0 ≤ k < p, 0 ≤ l < n,

where the Aij ’s and the Bkl’s are of dimension v
p × r

m and
v
p × t

n respectively. The master node forms the polynomials

Ã(s, z) =
�

i,j

Aijs
λij zρij , and B̃(s, z) =

�

k,l

Bkls
γklzδkl ,

1Floating point matrices with limited precision can be handled with appro-
priate scaling.
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where λij , ρij , γkl and δkl are suitably chosen integers. Fol-
lowing this, the master node evaluates Ã(s, z) and B̃(s, z)
at a fixed positive integer s and carefully chosen points z ∈
{z1, . . . , zK} (which can be real or complex) where K is the
number of worker nodes. Note that this only requires scalar
multiplication and addition operations on the part of the master
node. Subsequently, it sends matrices Ã(s, zi) and B̃(s, zi) to
the i-th worker node.

The i-th worker node computes the product
ÃT (s, zi)B̃(s, zi) and sends it back to the master node.
Let 1 ≤ τ ≤ K denote the minimum number of worker
nodes such that the master node can determine the required
product (i.e., matrix C) once any τ of the worker nodes
have completed their assigned jobs. We call τ the recovery
threshold of the scheme. In [1], τ is shown to be pmn+p−1.

III. REDUCED RECOVERY THRESHOLD CODES

A. Motivating Example
Let m = n = p = 2 so that the following block

decomposition holds

A =
�
A00 A01

A10 A11

�
and B =

�
B00 B01

B10 B11

�
.

We let
Ã(s, z) = A00 + A10s

−1 + (A01 + A11s
−1)z, and

B̃(s, z) = B00 + B10s + (B01 + B11s)z2.

The product ÃT (s, z)B̃(s, z) can be verified to be

ÃT (s, z)B̃(s, z)
= s−1(AT

10B00 + AT
11B00z + AT

10B01z
2 + AT

11B01z
3) (1)

+ C00 + C10z + C01z
2 + C11z

3 (2)

+ s(AT
00B10 + AT

01B10z + AT
00B11z

2 + AT
01B11z

3). (3)

Evidently, the product above contains the useful terms in
(2) as coefficients of zk for k = 0, . . . , 3. The other two lines
contain terms (coefficients of s−1zk and szk, k = 0, . . . , 3)
that we are not interested in; we refer to these as interference
terms. Rearranging the terms, we have

ÃT (s, z)B̃(s, z)
= (∗s−1 + C00 + ∗s)� �� �

X00

+ (∗s−1 + C10 + ∗s)� �� �
X10

z

+ (∗s−1 + C01 + ∗s)� �� �
X01

z2 + (∗s−1 + C11 + ∗s)� �� �
X11

z3,

where ∗ denotes an interference term.
As the above polynomial is of z-degree 3, equivalently we

have presented a coding strategy where we recover superposed
useful and interference terms even in the presence of K − 4
erasures.

Now, suppose that the absolute value of each entry in C and
of each of the interference terms is < L. Furthermore, assume
that s ≥ 2L. The Cij’s can then be recovered by exploiting
the fact that s ≥ 2L, e.g., for non-negative matrices A and B,
we can simply extract the integer part of each Xij and compute
its remainder upon division by s. The case of general A and
B is treated in Section III-B.

To summarize, under our assumptions on the maximum
absolute value of the matrix C and the interference matrix

products, we can obtain a scheme with a threshold of 4.
In contrast, the scheme of [1] would have a threshold
of 9.

Remark 1: We emphasize that the choice of polynomi-
als Ã(s, z) and B̃(s, z) are quite different in our work as
compared to [1]; this can be verified by setting s = 1
in the expressions. In particular, our choice of polynomials
deliberately creates the controlled superposition of useful
and interference terms (the choice of coefficients in [1]
explicitly avoids the superposition). We unentangle the super-
position by using our assumptions on the matrix entries
later. To our best knowledge, this unentangling idea first
appeared in the work of [2], though its motivations were
different.

B. General Code Construction

We now present the most general form of our result. Let
the block decomposed matrices A and B be of size p × m
and p× n respectively. We form the polynomials Ã(s, z) and
B̃(s, z) as follows

Ã(s, z) =
m−1�

i=0

zi

p−1�

u=0

Auis
−u, and

B̃(s, z) =
n−1�

j=0

zmj

p−1�

v=0

Bvjs
v.

Under this choice of polynomials Ã(s, z) and B̃(s, z),
we have

ÃT (s, z)B̃(s, z) =
m−1�

i=0

n−1�

j=0

p−1�

u=0

p−1�

v=0

AT
uiBvjz

mj+isv−u. (4)

To better understand the behavior of this sum, we divide it
into the following cases.

• Case 1: Useful terms. These are the terms with coeffi-
cients of the form AT

uiBuj . They are useful since Cij =	p−1
u=0 AT

uiBuj . It is easy to check that the term AT
uiBuj

is the coefficient of zmj+i.
• Case 2: Interference terms. Conversely, the terms in

(4) with coefficient AT
uiBvj , u �= v are the interfer-

ence terms and they are the coefficients of zmj+isv−u

(for v �= u).

Based on the above discussion, we obtain

ÃT (s, z)B̃(s, z)

=
m−1�

i=0

n−1�

j=0

zmj+i

×(∗s−(p−1)+ · · · +∗s−1 + Cij + ∗s+ · · · +∗sp−1

� �� �
Xij

), (5)

where ∗ denotes an interference term. Note that (5) consists
of consecutive powers zk for k = 0, . . . , mn − 1.

We choose distinct values zi for worker i (real or complex).
Suppose that the absolute value of each Cij and of each
interference term (marked with ∗) is at most L−1. We choose
s ≥ 2L.
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C. Decoding Algorithm

We now show that as long as at least mn of the worker
nodes return their computations, the master node can recover
the matrix C.

Suppose the master node obtains the result Yi =
ÃT (s, zi)B̃(s, zi) from any mn workers i1, i2, . . . , imn. Then,
it can recover Xij , i = 0, . . . , m − 1, j = 0, . . . , n − 1 by
solving the following equations,
⎡

⎢⎢⎢⎣

Yi1

Yi2
...

Yimn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣

1 zi1 z2
i1 · · · zmn−1

i1

1 zi2 z2
i2

· · · zmn−1
i2· · · · · ·

1 zimn z2
imn

· · · zmn−1
imn

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

X00

X01

...
X(m−1)(n−1)

⎤

⎥⎥⎥⎦.

The Vandermonde form of the above matrix guarantees the
uniqueness of the solution. This is because the determinant of
Vandermonde matrix can be expressed as

�
1≤a,b≤mn(zia −

zib
), which is non-zero since zij , j = 1, · · · , mn,

are distinct.
Note that Xij = ∗s−(p−1) + · · ·+ ∗s−1 + Cij + ∗s + · · ·+

∗sp−1. The master node can recover Cij from Xij as follows.
We first round Xij to the closest integer. This allows us to
recover Cij + ∗s + · · · + ∗sp−1. This is because

| ∗ s−(p−1) + · · · + ∗s−1| ≤ L − 1
2L − 1

< 1/2.

Next, we determine Ĉij = Cij +∗s+ · · ·+∗sp−1 mod s (we
work under the convention that the modulo output always lies
between 0 and s− 1). It is easy to see that if Ĉij ≤ s/2 then
Cij = Ĉij , otherwise Cij is negative and Cij = −(s − Ĉij).
If s is a power of 2, the modulo operation can be performed
by simple bit-shifting; this is the preferred choice.

D. Discussion of Precision Issues

The maximum and the minimum values (integer or floating
point) that can be stored and manipulated on a computer
have certain limits. Assuming s = 2L, it is easy to see
that |Xij | is at most (2L)p/2. Therefore, large values of L
and p can potentially cause numerical issues (overflow and/or
underflow). We note here that a simple but rather conservative
way to estimate the value of L would be to set it equal to
v · max |A| × max |B| + 1.

IV. TRADING OFF PRECISION AND THRESHOLD

The method presented in Section III achieves a threshold of
mn while requiring that the LHS of (5) remain with the range
of numeric values that can be represented on the machine.
In general, the terms in (5) will depend on the choice of the
zi’s and the values of the |Xij |’s, e.g., choosing the zi’s to
be complex roots of unity will imply that our method requires
mn × (2L)p/2 to be within the range of values that can be
represented.

We now present a scheme that allows us to trade off the
precision requirements with the recovery threshold of the
scheme, i.e., we can loosen the requirement on L and p at
the cost of an increased threshold.

Assume that p� is an integer that divides p. We form the
polynomials Ã(s, z) and B̃(s, z) as follows,

Ã(s, z) =
m−1�

i=0

p′−1�

j=0

zj+p′i
p/p′−1�

k=0

A(k+ p

p′ j),is
k, and

B̃(s, z) =
n−1�

u=0

p′−1�

v=0

zmp′u+(p′−1−v)

p/p′−1�

w=0

B(w+ p

p′ v),us−w.

Note that in the expressions above we use Ai,j to represent
the (i, j)-th entry of A (rather than Aij ). Next, we have

Ã(s, z)T B̃(s, z)

=
m−1�

i=0

p′−1�

j=0

p/p′−1�

k=0

n−1�

u=0

p′−1�

v=0

p/p′−1�

w=0

AT
(k+ p

p′ j),i

×B(w+ p

p′ v),uzmp′u+(p′−1−v)+j+p′isk−w. (6)

To better understand the behavior of (6), we again divide it
into useful terms and interference terms.

• Case 1: Useful terms. These are the terms with
coefficients of the form AT

(k+ p

p′ j),iB(k+ p

p′ j),u. The

term AT
(k+ p

p′ j),iB(k+ p

p′ j),u is the coefficient of

zmp′u+p′i+p′−1.
• Case 2: Interference terms. The interference terms

are associated with the terms with coefficient
AT

(k+ p
p′ j),iB(w+ p

p′ v),u, k �= w and/or j �= v. They
can be written as

AT
(k+ p

p′ j),iB(w+ p

p′ v),uzmp′u+(p′−1−v)+j+p′isk−w.

We now verify that the interference terms and useful terms
are distinct. This is evident when k �= w by examining the
exponent of s. When k = w but j �= v we argue as follows.
Suppose that there exist some u1, u2, i1, i2 such that mp�u1 +
p�i1 +p�−1 = mp�u2 +p� +p�i2−v+ j−1. Then, mp�(u1−
u2)+p�(i1−i2) = j−v. This is impossible since |j−v| < p�.

Next, we discuss the degree of Ã(s, z)T B̃(s, z) in the
variable z. In (6), the terms with maximal z-degree are the
terms with u = n− 1, v = 0, j = p�− 1 and i = m− 1. Thus,
the maximal degree of z in the expression is mnp� + p� − 2.
It can be verified that terms with z-degree from 0 to mnp� +
p� − 2 will appear in (6) and the z-degree of the useful terms
Ciu are mp�u+p�i+p�−1, i = 0, · · · , m−1, u = 0, · · · , n−1.

Likewise the s-degree of Ã(s, z)T B̃(s, z) varies from −(p−
1), . . . , 0, . . . , (p − 1) with the useful terms corresponding to
s0. Based on the above discussion, we obtain

ÃT (s, z)B̃(s, z) =
mnp′+p′−2�

k=0

Xkzk, where

Xk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∗s−( p

p′ −1) + · · · + ∗s−1 + Cij + ∗s + · · · + ∗s p

p′ −1
,

if k = mp�j + p�i + p − 1
∗s−( p

p′ −1) + · · · + ∗s−1 + ∗ + ∗s + · · · + ∗s p

p′ −1
,

otherwise.

Evidently, the recovery threshold is mnp� + p� − 1, which is
higher than that of the construction in Section III-B. However,
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Fig. 1. Comparison of total computation latency by simulating up to
8 stragglers.

let s = 2L, the maximum value of |Xij | is at most (2L)p/p′
/2

which is less than the previous construction if p� > 1.
Example 1: Let m = n = 2, p = 4 and p� = 2 so that

A =

⎡

⎢⎢⎣

A00 A01

A10 A11

A20 A21

A30 A31

⎤

⎥⎥⎦ and B =

⎡

⎢⎢⎣

B00 B01

B10 B11

B20 B21

B30 B31

⎤

⎥⎥⎦.

We let

Ã(s, z) = A00 + A10s
−1 + (A20 + A30s

−1)z
+ (A01 + A11s

−1)z2 + (A21 + A31s
−1)z3, and

B̃(s, z) = (B00 + B10s)z + B20 + B30s

+ (B01 + B11s)z5 + (B21 + B31s)z4.

The product of the above polynomials can be verified to con-
tain the useful terms with coefficients z, z3, z5, z7; the others
are interference terms. For this scheme the corresponding
|Xij | can at most be 2L2, though the recovery threshold is
9. Applying the method of Section III-B would result in the
|Xij | values being bounded by 8L4 with a threshold of 4.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We ran our experiments on AWS EC2 r3.large instances.
Our code is available online [8]. The input matrices
A and B were randomly generated integer matrices of size
8000 × 8000 with elements in the set {0, 1, . . . , 50}. These
matrices were pre-generated (for the different straggler counts)
and remained the same for all experiments. The master node
was responsible for the 2×2 block decomposition of A and B,
computing Ã(s, zi) and B̃(s, zi) for i = 1, . . . , 10 and sending
them to the worker nodes. The evaluation points (zi’s) were
chosen as 10 equally spaced reals within the interval [−1, 1].
The stragglers were simulated by having S randomly chosen
machines perform their local computation twice.

We compared the performance of our method (cf. Section
III) with [1]. For fairness, we chose the same evaluation points
in both methods. In fact, the choice of points in their code
available online [9] (which we adapted for the case when
p > 1), provides worse results than those reported here.

Computation latency refers to the elapsed time from the
point when all workers have received their inputs until enough

TABLE I

EFFECT OF BOUND (L) ON THE DECODING ERROR

of them finish their computations accounting for the decod-
ing time. The decoding time for our method is slightly higher
owing to the modulo s operation (cf. Section III-C).

It can be observed in Fig. 1 that for our method there
is no significant change in the latency for the values of
S ∈ {0, 2, 4, 6} and it remains around 9.83 seconds. When
S = 7, as expected the straggler effects start impacting our
system and the latency jumps to approximately 16.14 seconds.
In contrast, the performance of [1] deteriorates in the presence
of two or more stragglers (average latency ≥ 15.65 seconds).

Real Vandermonde matrices are well-known to have bad
condition numbers. The condition number is better when we
consider complex Vandermonde matrices with entries from the
unit circle [10]. In our method, the |Xij | and |Yij | values can
be quite large. This introduces small errors in the decoding
process. Let Ĉ be the decoded matrix and C � ATB be the
actual product. Our error metric is e = ||C−Ĉ||F

||C||F (subscript F
refers to the Frobenius norm). The results in Fig. 1, had an
error e of at most 10−7. We studied the effect of increasing
the average value of the entries in A and B in Table I.
The error is consistently low up to a bound of L = 1000,
following which the calculation is useless owing to numerical
overflow issues. We point out that in our experiments the error
e was identically zero if the zi’s were chosen from the unit
circle. However, this requires complex multiplication, which
increases the computation time.
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